为什么要学?

Scrapy_redis在scrapy的基础上实现了更多,更强大的功能。

有哪些功能体现?

request去重、爬虫持久化、实现分布式爬虫、断点续爬(带爬取的request存在redis中)、增量式爬虫(爬取过的生成指纹)

工作流程

先来看看之前的爬虫流程

再来看看scrapy_redis的爬虫流程

安装:

pip install scrapy-redis

源码包安装:

git clone git://github.com/rolando/scrapy-redis

官方文档在:https://scrapy-redis.readthedocs.io/en/stable/index.html#running-the-example-project

scrapy_redis 的源码在github:https://github.com/rmax/scrapy-redis

它提供了三个demo在example-projec/example中

三个案例有

先来看第一个案例:

dmoz.py

from scrapy.linkextractors import LinkExtractor
from scrapy.spiders import CrawlSpider, Rule class DmozSpider(CrawlSpider):
"""Follow categories and extract links."""
name = 'dmoz'
allowed_domains = ['dmoz.org']
start_urls = ['http://www.dmoz.org/'] rules = [
Rule(LinkExtractor(
restrict_css=('.top-cat', '.sub-cat', '.cat-item')
), callback='parse_directory', follow=True),
] def parse_directory(self, response):
for div in response.css('.title-and-desc'):
yield {
'name': div.css('.site-title::text').extract_first(),
'description': div.css('.site-descr::text').extract_first().strip(),
'link': div.css('a::attr(href)').extract_first(),
}

这个案例很像我们自己写的crawlspider什么区别,所以接下来就要进行配置操作

先来看看官方的 Use the following settings in your project:

 # 指定schedule队列
# Enables scheduling storing requests queue in redis.
SCHEDULER = "scrapy_redis.scheduler.Scheduler" # 指定哪个去重方法给request对象去重
# Ensure all spiders share same duplicates filter through redis.
DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter" # Default requests serializer is pickle, but it can be changed to any module
# with loads and dumps functions. Note that pickle is not compatible between
# python versions.
# Caveat: In python 3.x, the serializer must return strings keys and support
# bytes as values. Because of this reason the json or msgpack module will not
# work by default. In python 2.x there is no such issue and you can use
# 'json' or 'msgpack' as serializers.
#SCHEDULER_SERIALIZER = "scrapy_redis.picklecompat" # 队列中的内容是否持久保存,False:在关闭redis的时候清空redis
# Don't cleanup redis queues, allows to pause/resume crawls.
#SCHEDULER_PERSIST = True # Schedule requests using a priority queue. (default)
#SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.PriorityQueue' # Alternative queues.
#SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.FifoQueue'
#SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.LifoQueue' # Max idle time to prevent the spider from being closed when distributed crawling.
# This only works if queue class is SpiderQueue or SpiderStack,
# and may also block the same time when your spider start at the first time (because the queue is empty).
#SCHEDULER_IDLE_BEFORE_CLOSE = 10 # scrapy_redis实现的items保存到redis的pipeline
# Store scraped item in redis for post-processing.
ITEM_PIPELINES = {
'scrapy_redis.pipelines.RedisPipeline': 300
} # The item pipeline serializes and stores the items in this redis key.
#REDIS_ITEMS_KEY = '%(spider)s:items' # The items serializer is by default ScrapyJSONEncoder. You can use any
# importable path to a callable object.
#REDIS_ITEMS_SERIALIZER = 'json.dumps' # 指定redis的地址
# Specify the host and port to use when connecting to Redis (optional).
#REDIS_HOST = 'localhost'
#REDIS_PORT = 6379 # 指定redis的地址
# Specify the full Redis URL for connecting (optional).
# If set, this takes precedence over the REDIS_HOST and REDIS_PORT settings.
#REDIS_URL = 'redis://user:pass@hostname:9001' # Custom redis client parameters (i.e.: socket timeout, etc.)
#REDIS_PARAMS = {}
# Use custom redis client class.
#REDIS_PARAMS['redis_cls'] = 'myproject.RedisClient' # If True, it uses redis' ``spop`` operation. This could be useful if you
# want to avoid duplicates in your start urls list. In this cases, urls must
# be added via ``sadd`` command or you will get a type error from redis.
#REDIS_START_URLS_AS_SET = False # Default start urls key for RedisSpider and RedisCrawlSpider.
#REDIS_START_URLS_KEY = '%(name)s:start_urls' # Use other encoding than utf-8 for redis.
#REDIS_ENCODING = 'latin1'

所以我们需要做的就是在配置文件中添加这几行

# 去重
DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter"
# 调度器
SCHEDULER = "scrapy_redis.scheduler.Scheduler"
# 调度器持久化
SCHEDULER_PERSIST = True # 指定redis地址
REDIS_URL = "redis://192.168.226.150:6379"
ITEM_PIPELINES = {
'example.pipelines.ExamplePipeline': 300,
'scrapy_redis.pipelines.RedisPipeline': 400, # 保存数据到redis
}

在这里也贴上github上的settings:

# Scrapy settings for example project
#
# For simplicity, this file contains only the most important settings by
# default. All the other settings are documented here:
#
# http://doc.scrapy.org/topics/settings.html
#
SPIDER_MODULES = ['example.spiders']
NEWSPIDER_MODULE = 'example.spiders' USER_AGENT = 'scrapy-redis (+https://github.com/rolando/scrapy-redis)' DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter"
SCHEDULER = "scrapy_redis.scheduler.Scheduler"
SCHEDULER_PERSIST = True
#SCHEDULER_QUEUE_CLASS = "scrapy_redis.queue.SpiderPriorityQueue"
#SCHEDULER_QUEUE_CLASS = "scrapy_redis.queue.SpiderQueue"
#SCHEDULER_QUEUE_CLASS = "scrapy_redis.queue.SpiderStack" ITEM_PIPELINES = {
'example.pipelines.ExamplePipeline': 300,
'scrapy_redis.pipelines.RedisPipeline': 400,
} LOG_LEVEL = 'DEBUG' # Introduce an artifical delay to make use of parallelism. to speed up the
# crawl.
DOWNLOAD_DELAY = 1

git hub

接下来我们就运行,跟往常的运行命令一样,切换到example 下,执行命令

\example>scrapy crawl dmoz

然后就去redis中查看

可以看到多了三个键

dmoz:items :存放获取到的item信息,在pipeline中开启RedisPipeline才会存入

dmoz:dupefilter :指纹集合,存放的是已经进入 scheduler 队列的 request 对象的指纹,指纹默认由请求方法,url和请求体组成

dmoz:requests :Scheduler队列,存放着待请求的 request 对象,获取的过程是pop操作,即获取一个会去除一个

三个键的类型:

以及数据

items

dupefilter

requests

如果我们不想把数据存放到redis,而是放到其他的地方,应该怎么做?

先来测试一下redispiipeline 关闭的情况

#ITEM_PIPELINES = {
# 'example.pipelines.ExamplePipeline': 300,
#'scrapy_redis.pipelines.RedisPipeline': 400, # 保存数据到redis
#}

再看看redis数据库中这三个键如何变化,变化结果:

dmoz:requests 有变化(变多或者变少或者不变)
dmoz:dupefilter 变多
dmoz:items 不变

所以 redispipeline中仅仅实现了item数据存储到redis的过程,我们可以新建一个pipeline(或者修改默认的ExamplePipeline),让数据存储到其他地方。

接下来看一下 RedisPipeline 的源码段

from scrapy_redis.pipelines import RedisPipeline
# 调用这个方法,实现数据的保存
def process_item(self, item, spider):
# 调用一个异步线程去处理这个item
return deferToThread(self._process_item, item, spider) def _process_item(self, item, spider):
key = self.item_key(item, spider)
data = self.serialize(item)
# 向dmoz:items中添加item
self.server.rpush(key, data)
return item

去重的方法,通过生成指纹识别:指纹默认由请求方法,url和请求体组成

- 使用sha1加密request得到指纹
- 把指纹存在redis的集合中
- 下一次新来一个request,同样的方式生成指纹,判断指纹是否存在reids的集合中

- fp = hashlib.sha1()
- fp.update(request.method)
- fp.update(request.body or b"")
- fp.update(url)
- fp.hexdigest()

判断数据是否存在redis的集合中,不存在插入

added = self.server.sadd(self.key, fp)
return added != 0

去重的的类 RFPDupeFilter :

主要是这三个方法:

request_seen:判断requests对象是否已经存在,如果没有就添加到“dmoz:dupefilter”
request_fingerprint:调用函数request_fingerprint
request_fingerprint:主要是对请求进行加密生成指纹

下面来看看调度器

总结:
domz案例相当于之前的spider多了两个内容:
1、持久化
2、request去重的功能
通过源码以及setting中的配置来看,我们可以重写 去重 和 调度器的方法 ,还有存储数据的 pipeline 。在配置中改成我们重写的类就行。

Scrapy_redis 之 RedisSpider

这是scrapy_redis 的第二个案例

先来看试一下初始源码

from scrapy_redis.spiders import RedisSpider

class MySpider(RedisSpider):
"""Spider that reads urls from redis queue (myspider:start_urls)."""
name = 'myspider_redis'
redis_key = 'myspider:start_urls' def __init__(self, *args, **kwargs):
# Dynamically define the allowed domains list.
domain = kwargs.pop('domain', '')
self.allowed_domains = filter(None, domain.split(','))
super(MySpider, self).__init__(*args, **kwargs) def parse(self, response):
return {
'name': response.css('title::text').extract_first(),
'url': response.url,
}

myspider_redis.py

解析源码

配置文件设置:

# 去重
DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter"
# 调度器
SCHEDULER = "scrapy_redis.scheduler.Scheduler"
# 调度器持久化
SCHEDULER_PERSIST = True # 指定redis地址
REDIS_URL = "redis://192.168.226.150:6379"
ITEM_PIPELINES = {
'example.pipelines.ExamplePipeline': 300,
'scrapy_redis.pipelines.RedisPipeline': 400, # 保存数据到redis
}

start_url 只能由一台机器爬取,其他机器刚开始处于等待状态,这是随机的

但是这里的start_url 改为redis_key='自定义键名' 例如('dangdang')

那么执行的启动命令就是在redis中执行这条语句:lpush 健名 起始url

lpush dangdang http://www.dangdang.com

Scrapy_redis 之 RedisCrawlSpider

这是scrapy_redis 的第三个案例

先来看初始源码

from scrapy.spiders import Rule
from scrapy.linkextractors import LinkExtractor from scrapy_redis.spiders import RedisCrawlSpider class MyCrawler(RedisCrawlSpider):
"""Spider that reads urls from redis queue (myspider:start_urls)."""
name = 'mycrawler_redis'
redis_key = 'mycrawler:start_urls' rules = (
# follow all links
Rule(LinkExtractor(), callback='parse_page', follow=True),
) def __init__(self, *args, **kwargs):
# Dynamically define the allowed domains list.
domain = kwargs.pop('domain', '')
self.allowed_domains = filter(None, domain.split(','))
super(MyCrawler, self).__init__(*args, **kwargs) def parse_page(self, response):
return {
'name': response.css('title::text').extract_first(),
'url': response.url,
}

mycrawl_redis.py

解析源码

配置文件

# 去重
DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter"
# 调度器
SCHEDULER = "scrapy_redis.scheduler.Scheduler"
# 调度器持久化
SCHEDULER_PERSIST = True # 指定redis地址
REDIS_URL = "redis://192.168.226.150:6379"
ITEM_PIPELINES = {
'example.pipelines.ExamplePipeline': 300,
'scrapy_redis.pipelines.RedisPipeline': 400, # 保存数据到redis
}

这个案例跟crawlspider的使用差不多,也是没有start_url 改为了 redis_key

启动方式跟案例二一样。爬虫准备就绪,redis数据库中

lpush 健名 起始url

scrapy-redis 分布式爬虫的更多相关文章

  1. Scrapy 框架 分布式 爬虫

    分布式 爬虫 scrapy-redis 实现 原生scrapy 无法实现 分布式 调度器和管道无法被分布式机群共享 环境安装 - pip install scrapy_redis 导包:from sc ...

  2. scrapy简单分布式爬虫

    经过一段时间的折腾,终于整明白scrapy分布式是怎么个搞法了,特记录一点心得. 虽然scrapy能做的事情很多,但是要做到大规模的分布式应用则捉襟见肘.有能人改变了scrapy的队列调度,将起始的网 ...

  3. scrapy进行分布式爬虫

    今天,参照崔庆才老师的爬虫实战课程,实践了一下分布式爬虫,并没有之前想象的那么神秘,其实非常的简单,相信你看过这篇文章后,不出一小时,便可以动手完成一个分布式爬虫! 1.分布式爬虫原理 首先我们来看一 ...

  4. 16 Scrapy之分布式爬虫

    redis分布式部署 1.scrapy框架是否可以自己实现分布式? - 不可以.原因有二. 其一:因为多台机器上部署的scrapy会各自拥有各自的调度器,这样就使得多台机器无法分配start_urls ...

  5. scrapy补充-分布式爬虫

    spiders 介绍:在项目中是创建爬虫程序的py文件 #1.Spiders是由一系列类(定义了一个网址或一组网址将被爬取)组成,具体包括如何执行爬取任务并且如何从页面中提取结构化的数据. #2.换句 ...

  6. 【Python3爬虫】爬取美女图新姿势--Redis分布式爬虫初体验

    一.写在前面 之前写的爬虫都是单机爬虫,还没有尝试过分布式爬虫,这次就是一个分布式爬虫的初体验.所谓分布式爬虫,就是要用多台电脑同时爬取数据,相比于单机爬虫,分布式爬虫的爬取速度更快,也能更好地应对I ...

  7. 【Python3爬虫】学习分布式爬虫第一步--Redis分布式爬虫初体验

    一.写在前面 之前写的爬虫都是单机爬虫,还没有尝试过分布式爬虫,这次就是一个分布式爬虫的初体验.所谓分布式爬虫,就是要用多台电脑同时爬取数据,相比于单机爬虫,分布式爬虫的爬取速度更快,也能更好地应对I ...

  8. 爬虫--scrapy+redis分布式爬取58同城北京全站租房数据

    作业需求: 1.基于Spider或者CrawlSpider进行租房信息的爬取 2.本机搭建分布式环境对租房信息进行爬取 3.搭建多台机器的分布式环境,多台机器同时进行租房数据爬取 建议:用Pychar ...

  9. 基于scrapy的分布式爬虫抓取新浪微博个人信息和微博内容存入MySQL

    为了学习机器学习深度学习和文本挖掘方面的知识,需要获取一定的数据,新浪微博的大量数据可以作为此次研究历程的对象 一.环境准备   python 2.7  scrapy框架的部署(可以查看上一篇博客的简 ...

  10. 第三百六十五节,Python分布式爬虫打造搜索引擎Scrapy精讲—elasticsearch(搜索引擎)的基本查询

    第三百六十五节,Python分布式爬虫打造搜索引擎Scrapy精讲—elasticsearch(搜索引擎)的基本查询 1.elasticsearch(搜索引擎)的查询 elasticsearch是功能 ...

随机推荐

  1. CentOS6.5系统挂载NTFS分区的硬盘

    下载rpmforge,下载对应的版本,就是对应CentOS版本,还有32位与64位也要对应上.rpmforge拥有4000多种CentOS的软件包,被CentOS社区认为是最安全也是最稳定的一个软件仓 ...

  2. maven重新导入,不能拉到最新jar包的问题

    需要删除本地jar,再重新reimport  pom.xml

  3. 服务器配置tomcat部署项目

    部署项目首先你需要把你的java web项目打包成war文件 在需要打包的项目上右键>选择[Export] 选中[Web]下面的[WAR file],点击[Next] 通过[Browse]选择保 ...

  4. HTTPS 之 TLS 性能调优

    HTTPS(HTTP over SSL)是以安全为目标的 HTTP 通道,可以理解为 HTTP + SSL/TLS,即在 HTTP 下加入 SSL/TLS 层作为安全基础.其中 TLS 的前身是 SS ...

  5. React从入门到放弃之前奏(2):React简介

    本系列将尽可能使用ES6(ES2015)语法.所以均在上节webpack的基础上做开发. React是Facebook开发的一款JS库,因为基于Virtual DOM,所以响应速度快,以及支持跨平台. ...

  6. 33.APP后端处理视频的方案

    在当前的app应用中,到处都能看到视频的身影,例如,在社交类的app上,用户可以拍摄属于自己的小视频,并发布到相应得栏目,增加和好友们互动的机会. 后台常见的视频处理有以下几种: ·          ...

  7. 测试APPEND INSERT是否产生UNDO信息的过程

    D:\>sqlplus test/testSQL*Plus: Release 11.1.0.6.0 - Production on 星期三 06月 29 19:46:41 2016Copyrig ...

  8. 如何解决-win7系统打开截图工具显示“截图工具当前未在计算机上运行”

    打开win7系统自带截图工具,显示"截图工具当前未在计算机上运行.请重新启动计算机,然后重试",  解决方法  1.首先在C盘中搜索tpcps.dll: 2.将数据最大那个tpcp ...

  9. context.go

    package nsqd type context struct {     nsqd *NSQD }

  10. Golang 的内存管理(上篇)

    Golang 的内存管理基于 tcmalloc,可以说起点挺高的.但是 Golang 在实现的时候还做了很多优化,我们下面通过源码来看一下 Golang 的内存管理实现.下面的源码分析基于 go1.8 ...