[POJ 3243]Clever Y
Description
Little Y finds there is a very interesting formula in mathematics:
XY mod Z = K
Given X, Y, Z, we all know how to figure out K fast. However, given X, Z, K, could you figure out Y fast?
Input
Input file ends with 3 zeros separated by spaces.
Output
Sample Input
5 58 33
2 4 3
0 0 0
Sample Output
9
No Solution
题解
扩展BSGS:
当模数 $c$ 不是质数的时候,显然不能直接使用 $BSGS$ 了,考虑它的扩展算法。
前提:同余性质。
令 $d = gcd(a, c)$ , $A = a \cdot d,B = b \cdot d, C = c \cdot d$
则 $a \cdot d \equiv b \cdot d \pmod{c \cdot d}$
等价于 $a \equiv b \pmod{c}$
因此我们可以先消除因子。
对于现在的问题 $(A \cdot d)^x \equiv B \cdot d \pmod{C \cdot d}$ 当我们提出 $d = gcd(a, c)$ ($d \neq 1$)后,原式化为 $A \cdot (A \cdot d)^{x-1} \equiv B \pmod{C}$ 。
即求 $D \cdot A^{x-cnt} \equiv B \pmod{C}$ ,令 $x = i \cdot r-j+cnt$ 。之后的做法就和 $BSGS$ 一样了。
值得注意的是因为这样求出来的解 $x \geq cnt$ 的,但有可能存在解 $x < cnt$ ,所以一开始需要特判。
//It is made by Awson on 2018.1.15
#include <set>
#include <map>
#include <cmath>
#include <ctime>
#include <queue>
#include <stack>
#include <cstdio>
#include <string>
#include <vector>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define Abs(a) ((a) < 0 ? (-(a)) : (a))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Swap(a, b) ((a) ^= (b), (b) ^= (a), (a) ^= (b))
using namespace std;
const LL MOD = ;
void read(LL &x) {
char ch; bool flag = ;
for (ch = getchar(); !isdigit(ch) && ((flag |= (ch == '-')) || ); ch = getchar());
for (x = ; isdigit(ch); x = (x<<)+(x<<)+ch-, ch = getchar());
x *= -*flag;
}
void write(LL x) {
if (x > ) write(x/);
putchar(x%+);
} LL a, b, c, ans;
struct MAP {
LL ha[MOD+]; int id[MOD+];
void clear() {for (int i = ; i < MOD; i++) ha[i] = id[i] = -; }
int count(LL x) {
LL pos = x%MOD;
while (true) {
if (ha[pos] == -) return ;
if (ha[pos] == x) return ;
++pos; if (pos >= MOD) pos -= MOD;
}
}
void insert(LL x, int idex) {
LL pos = x%MOD;
while (true) {
if (ha[pos] == - || ha[pos] == x) {ha[pos] = x, id[pos] = idex; return; }
++pos; if (pos >= MOD) pos -= MOD;
}
}
int query(LL x) {
LL pos = x%MOD;
while (true) {
if (ha[pos] == x) return id[pos];
++pos; if (pos >= MOD) pos -= MOD;
}
}
}mp; LL quick_pow(LL a, LL b, LL c) {
LL ans = ;
while (b) {
if (b&) ans = ans*a%c;
a = a*a%c, b >>= ;
}
return ans;
}
LL gcd(LL a, LL b) {return b ? gcd(b, a%b) : a; }
LL exBSGS(LL a, LL b, LL c) {
if (b == ) return ;
LL cnt = , d = , t;
while ((t = gcd(a, c)) != ) {
if (b%t) return -;
++cnt, b /= t, c /= t, d = d*(a/t)%c;
if (d == b) return cnt;
}
mp.clear();
LL tim = ceil(sqrt(c)), tmp = b%c;
for (int i = ; i <= tim; i++) {
mp.insert(tmp, i); tmp = tmp*a%c;
}
t = tmp = quick_pow(a, tim, c); tmp = (tmp*d)%c;
for (int i = ; i <= tim; i++) {
if (mp.count(tmp)) return tim*i-mp.query(tmp)+cnt;
tmp = tmp*t%c;
}
return -;
}
void work() {
while ((~scanf("%lld%lld%lld", &a, &c, &b))) {
if (c == ) return;
if ((ans = exBSGS(a%c, b%c, c)) == -) printf("No Solution\n");
else write(ans), putchar('\n');
}
}
int main() {
work();
return ;
}
[POJ 3243]Clever Y的更多相关文章
- POJ 3243 Clever Y (求解高次同余方程A^x=B(mod C) Baby Step Giant Step算法)
不理解Baby Step Giant Step算法,请戳: http://www.cnblogs.com/chenxiwenruo/p/3554885.html #include <iostre ...
- POJ 3243 Clever Y 扩展BSGS
http://poj.org/problem?id=3243 这道题的输入数据输入后需要将a和b都%p https://blog.csdn.net/zzkksunboy/article/details ...
- poj 3243 Clever Y && 1467: Pku3243 clever Y【扩展BSGS】
扩展BSGS的板子 对于gcd(a,p)>1的情况 即扩展BSGS 把式子变成等式的形式: \( a^x+yp=b \) 设 \( g=gcd(a,p) \) 那么两边同时除以g就会变成: \( ...
- POJ 3243 Clever Y(离散对数-拓展小步大步算法)
Description Little Y finds there is a very interesting formula in mathematics: XY mod Z = K Given X, ...
- poj 3243 Clever Y 高次方程
1 Accepted 8508K 579MS C++ 2237B/** hash的强大,,还是高次方程,不过要求n不一定是素数 **/ #include <iostream> #inclu ...
- POJ 3243 Clever Y | BSGS算法完全版
题目: 给你A,B,K 求最小的x满足Ax=B (mod K) 题解: 如果A,C互质请参考上一篇博客 将 Ax≡B(mod C) 看作是Ax+Cy=B方便叙述与处理. 我们将方程一直除去A,C的最大 ...
- POJ 3243 Clever Y Extended-Baby-Step-Giant-Step
题目大意:给定A,B,C,求最小的非负整数x,使A^x==B(%C) 传说中的EXBSGS算法0.0 卡了一天没看懂 最后硬扒各大神犇的代码才略微弄懂点0.0 參考资料: http://quarter ...
- 【POJ】3243 Clever Y
http://poj.org/problem?id=3243 题意:求$a^y \equiv b \pmod{p}$最小的$y$.(0<=x, y, p<=10^9) #include & ...
- BZOJ 3243 Clever Y
Description Little Y finds there is a very interesting formula in mathematics: XY mod Z = K Given X, ...
随机推荐
- react的基本使用,及常用填坑
import React, { Component } from 'react'; import PropTypes from 'prop-types'; import './First.css'; ...
- C语言程序设计(基础)- 第3周作业
一.PTA编程题目 完成PTA第三周作业中4个题目: 1.7-9 A乘以B 要求:输入的两个整数:A是你学号前两位数字,B是你学号后两位数字 2.7-10 求整数均值 要求:输入的整数是:你的身高.体 ...
- Beta No.5
今天遇到的困难: 前端大部分代码由我们放逐的组员完成,这影响到了我们解决"Fragment碎片刷新时总产生的固定位置"的进程,很难找到源码对应 新加入的成员对界面代码不熟悉. 我们 ...
- 1013团队Beta冲刺day2
项目进展 李明皇 今天解决的进度 优化了信息详情页的布局:日期显示,添加举报按钮等 优化了程序的数据传递逻辑 明天安排 程序运行逻辑的完善 林翔 今天解决的进度 实现微信端消息发布的插入数据库 明天安 ...
- 团队作业7——Beta版本冲刺计划及安排
上一个阶段的总结: 在Alpha阶段,我们小组已近完成了大部分的功能要求,小组的每一个成员都发挥了自己的用处.经过了这么久的磨合,小组的成员之间越来越默契,相信在接下来的合作中,我们的开发速度会越来越 ...
- iOS极光推送SDK的使用流程
一.极光推送简介 极光推送是一个端到端的推送服务,使得服务器端消息能够及时地推送到终端用户手机上,整合了iOS.Android和WP平台的统一推送服务.使用起来方便简单,已于集成,解决了原生远程推送繁 ...
- iOS中CocoaPods的安装及错误详解
什么是CocoaPods CocoaPods是OS X和iOS下的一个第三类库管理工具,通过CocoaPods工具我们可以为项目添加被称为"Pods"的依赖库(这些类库必须是Coc ...
- var、let、const区别
1.let不存在变量提升,必须升明后才可用. 'use strict'; (function(){ console.log(varTest); console.log(letTest); var va ...
- Java中Math类的常用方法
public class MathDemo { public static void main(String args[]){ /** * abs求绝对值 */ System.out.println( ...
- dede使用心得
Question one: 最近做了一些视频教程传到优酷网站上,但我想引入这些视频教程到我的网站,在发表时我发现织梦CMS自带的编辑器又不直接支持优酷等视频网站的引用.所以为了方便教程的发布,特意在网 ...