题目描述

在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。多多决定把所有的果子合成一堆。

每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。可以看出,所有的果子经过n-1次合并之后,就只剩下一堆了。多多在合并果子时总共消耗的体力等于每次合并所耗体力之和。

因为还要花大力气把这些果子搬回家,所以多多在合并果子时要尽可能地节省体力。假定每个果子重量都为1,并且已知果子的种类数和每种果子的数目,你的任务是设计出合并的次序方案,使多多耗费的体力最少,并输出这个最小的体力耗费值。

例如有3种果子,数目依次为1,2,9。可以先将1、2堆合并,新堆数目为3,耗费体力为3。接着,将新堆与原先的第三堆合并,又得到新的堆,数目为12,耗费体力为12。所以多多总共耗费体力=3+12=15。可以证明15为最小的体力耗费值。

输入输出格式

输入格式:

输入包括两行,第一行是一个整数n(1<=n<=10000),表示果子的种类数。第二行包含n个整数,用空格分隔,第i个整数ai(1<=ai<=20000)是第i种果子的数目。

输出格式:

输出包括一行,这一行只包含一个整数,也就是最小的体力耗费值。输入数据保证这个值小于2^31。

输入输出样例

输入样例#1:

3
1 2 9
输出样例#1:

15

说明

对于30%的数据,保证有n<=1000:

对于50%的数据,保证有n<=5000;

对于全部的数据,保证有n<=10000。

合并果子

这显然很水,但是怎么做就是每个人的不同思路了

这里奉上的是有关优先队列【好像算是堆的应用】(其实有些时候我也分不清)的解法

我们可以将这个问题换一个角度考虑,给定n个叶结点,每个结点都有一个权值w【i】,将它们中两个合并为树,假设每个结点从根到它的距离是d【i】,使得最终∑(wi*di)最小。

这样就有更好的解法

(1)从森林里取两个权和最小的子树

(2)将他们的权值和相加,得到新的子树,并把原来的子树删掉,将新的子树插入到森林之中

(3)连续重复(1)和(2),直到森林里只留下一棵树为止

代码如下:

#include<bits/stdc++.h>
using namespace std;
int n;
priority_queue<int,vector<int>,greater<int> >h;
void work()
{
int i,x,y,ans=;
cin>>n;
for(int i=;i<=n;i++)
{
cin>>x;
h.push(x);
}
for(int i=;i<n;i++)
{
x=h.top();h.pop();
y=h.top();h.pop();
ans+=x+y;
h.push(x+y);
}
cout<<ans;
}
int main()
{
work();
}

【洛谷P1090 合并果子】的更多相关文章

  1. 堆学习笔记(未完待续)(洛谷p1090合并果子)

    上次讲了堆,别人都说极其简单,我却没学过,今天又听dalao们讲图论,最短路又用堆优化,问懂了没,底下全说懂了,我???,感觉全世界都会了堆,就我不会,于是我决定补一补: ——————来自百度百科 所 ...

  2. 洛谷 P1090合并果子【贪心】【优先队列】

    题目描述 在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多决定把所有的果子合成一堆. 每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和.可 ...

  3. 洛谷P1090 合并果子

    合并果子 题目链接 这个只能用于结构体中 struct item { int val; friend bool operator < (item a,item b) { return a.val ...

  4. [NOIP2004] 提高组 洛谷P1090 合并果子

    题目描述 在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多决定把所有的果子合成一堆. 每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和.可 ...

  5. 洛谷P1090 合并果子【贪心】

    在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多决定把所有的果子合成一堆. 每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和.可以看出,所 ...

  6. 洛谷P1090——合并果子(贪心)

    https://www.luogu.org/problem/show?pid=1090 题目描述 在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多决定把所有的果子合 ...

  7. 洛谷 p1090 合并果子

    https://www.luogu.org/problemnew/show/P1090 优先队列的经典题目 体现了stl的优越性 #include<bits/stdc++.h> using ...

  8. Java实现 洛谷 P1090 合并果子

    import java.io.BufferedInputStream; import java.util.Arrays; import java.util.Scanner; public class ...

  9. 代码源 每日一题 分割 洛谷 P6033合并果子

    ​ 题目链接:切割 - 题目 - Daimayuan Online Judge 数据加强版链接: [NOIP2004 提高组] 合并果子 加强版 - 洛谷 题目描述 有一个长度为 ∑ai 的木板,需要 ...

随机推荐

  1. 【译】最大限度地降低多线程 C# 代码的复杂性

    分支或多线程编程是编程时最难最对的事情之一.这是由于它们的并行性质所致,即要求采用与使用单线程的线性编程完全不同的思维模式.对于这个问题,恰当类比就是抛接杂耍表演者,必须在空中抛接多个球,而不要让它们 ...

  2. Python笔记-面向对象编程

    1.类和实例 面向-对象的三大特点:数据封装.继承和多态 在Python中,所有数据类型都可以视为对象,当然也可以自定义对象.自定义的对象数据类型就是面向对象中的类(Class)的概念. 假设我们要处 ...

  3. Android Studio教程04-Task和Back stack

    目录 1.Tasks and Back Stack 1.1. 当点击Back按钮返回到上一个Activity时发生了什么? 1.2. 点击HOME按钮 1.3.多次点击进入Activity-Back按 ...

  4. 关于Android Studio 3.2 运行应用时提示 “Instant Run requires that the platform corresponding to your target device (Android 7.0 (Nougat)) is installed.” 的说明

    点击"Run",运行App后,Android Studio显示如图1-1界面: 图1-1 这是因为你连接的外部设备(比如Android手机或AVD)的SDK版本在你的电脑上没有安装 ...

  5. java获取机器IP地址常用方法

    private String getHostIP(){ Enumeration<NetworkInterface> allNetInterfaces = null; String resu ...

  6. Java基础系列--07_Object类的学习及源码分析

    Object: 超类 (1)Object是类层次结构的顶层类,是所有类的根类,超类.   所有的类都直接或者间接的继承自Object类.   所有对象(包括数组)都实现这个类的方法 (2)Object ...

  7. [LeetCode] 17. 电话号码的字母组合

    题目描述:https://leetcode-cn.com/problems/letter-combinations-of-a-phone-number/ 题目描述: 给定一个仅包含数字 2-9 的字符 ...

  8. 了解基本的bash shell命令

    本节内容主要介绍如何使用bash shell提供的基本命令处理Linux文件和目录: 1.启动shell shell是一个可以交互访问的Linux系统程序,它的运行与普通程序相同,系统启动的shell ...

  9. RB-Tree插入过程详解

    红黑树具有很优秀的特性,其自平衡性特性,局部调整特性使得红黑树插入,删除,以查找,以及这些过程的内存资源的占用,的综合性能是非常高的(通常我们会拿红黑树和AVL树进行对比). 对于红黑树的这些特性,在 ...

  10. Pairwise 找到你的另一半

    都说优秀的程序员擅长面向对象编程,但却经常找不到另一半,这是为什么呢?因为你总是把自己局限成为一个程序员,没有打开自己的思维. 这是一个社群的时代啊,在这里你应该找到与你有相同价值观但又互补的另一半. ...