TensorBoard是TensorFlow 的可视化工具。主要为了更方便用户理解 TensorFlow 程序、调试与优化,用户可以用 TensorBoard 来展现 TensorFlow 图像,绘制图像生成的定量指标图以及附加数据。

TensorBoard 通过读取 TensorFlow 的事件文件来运行。TensorFlow 的事件文件包括了在 TensorFlow 运行中涉及到的主要数据,在运行计算图后,tensorflow会在当前文件夹下,生成一个log文件夹,所有的事件文件都会放在文件夹中,每次运行文件都会生成一个日志文件。tensorboard是通过运行这些日志文件把计算图过程可视化。

下面我们来看个简单例子:

import tensorflow as tf

with tf.Graph().as_default():

    x=tf.placeholder(tf.float32,name='x')
y_true=tf.placeholder(tf.float32,name='y_true') writer=tf.summary.FileWriter(logdir='logs',graph=tf.get_default_graph())
writer.close()

运行上面代码会在当前目录下生成一个logs的文件夹,然后我们可以通过tensorboard运行这个日志文件来展示计算图。

tensorboard --logdir=C:\Users\Administrator\PycharmProjects\untitled2\logs

其中tensorboard --logdir运行事件文件的命令行,C:\Users\Administrator\PycharmProjects\untitled2\logs为日志文件的路径

需要注意的是运行tensorboard命令时,需要先进入到tesorboard的安装文件夹下,或者已经在系统中设定好了环境变量

运行后会生成一段类似这样的代码TensorBoard 0.4.0rc3 at http://20170318-133753:6006 (Press CTRL+C to quit)

把其中http://20170318-133753:6006的地址复制到浏览器打开,就能进入tensorboard界面。

下面是简单线性模型代码和计算图

import tensorflow as tf
with tf.Graph().as_default():
#name_scope作用是给节点添加名称,以便生成简洁的tensorboard
with tf.name_scope('input'):
#添加占位符
x=tf.placeholder(tf.float32,name='x')
y_true=tf.placeholder(tf.float32,name='y_true') with tf.name_scope('inference'):
#添加变量
w=tf.Variable(tf.zeros([1]),name='weight')
b = tf.Variable(tf.zeros([1]),name='bias') #添加模型函数
y_pre=tf.add(tf.multiply(x,w),b) #添加损失函数
loss_function=tf.reduce_mean(tf.pow(y_true-y_pre,2))/2 #梯度计算(learning_rate 是学习步长)
optimizer=tf.train.GradientDescentOptimizer(learning_rate=0.01) #添加训练节点
trian=optimizer.minimize(loss_function) #添加评估节点
envalue=tf.reduce_mean(tf.pow(y_true-y_pre,2))/2 #初始化变量和节点
init=tf.global_variables_initializer() writer=tf.summary.FileWriter(logdir='logs',graph=tf.get_default_graph())
writer.close()

呈现的结果如下:

TensorBoard的使用(结合线性模型)的更多相关文章

  1. [TF] Architecture - Computational Graphs

    阅读笔记: 仅希望对底层有一定必要的感性认识,包括一些基本核心概念. Here只关注Graph相关,因为对编程有益. TF – Kernels模块部分参见:https://mp.weixin.qq.c ...

  2. 机器学习笔记4-Tensorflow线性模型示例及TensorBoard的使用

    前言 在上一篇中,我简单介绍了一下Tensorflow以及在本机及阿里云的PAI平台上跑通第一个示例的步骤.在本篇中我将稍微讲解一下几个基本概念以及Tensorflow的基础语法. 本文代码都是基于A ...

  3. tensorboard入门

    Tensorboard tensorboard用以图形化展示我们的代码结构和图形化训练误差等,辅助优化程序 tensorboard实际上是tensorflow机器学习框架下的一个工具,需要先安装ten ...

  4. 广义线性模型(Generalized Linear Models)

    前面的文章已经介绍了一个回归和一个分类的例子.在逻辑回归模型中我们假设: 在分类问题中我们假设: 他们都是广义线性模型中的一个例子,在理解广义线性模型之前需要先理解指数分布族. 指数分布族(The E ...

  5. SPSS数据分析—广义线性模型

    我们前面介绍的一般线性模型.Logistic回归模型.对数线性模型.Poisson回归模型等,实际上均属于广义线性模型的范畴,广义 线性模型包含的范围非常广泛,原因在于其对于因变量.因变量的概率分布等 ...

  6. SPSS数据分析—对数线性模型

    我们之前讲Logistic回归模型的时候说过,分类数据在使用卡方检验的时候,当分类过多或者每个类别的水平数过多时,单元格会划分的非常细,有可能会导致大量单元格频数很小甚至为0,并且卡方检验虽然可以分析 ...

  7. Tensorflow学习笔记3:TensorBoard可视化学习

    TensorBoard简介 Tensorflow发布包中提供了TensorBoard,用于展示Tensorflow任务在计算过程中的Graph.定量指标图以及附加数据.大致的效果如下所示, Tenso ...

  8. Stanford大学机器学习公开课(四):牛顿法、指数分布族、广义线性模型

    (一)牛顿法解最大似然估计 牛顿方法(Newton's Method)与梯度下降(Gradient Descent)方法的功能一样,都是对解空间进行搜索的方法.其基本思想如下: 对于一个函数f(x), ...

  9. SPSS数据分析—混合线性模型

    之前介绍过的基于线性模型的方差分析,虽然扩展了方差分析的领域,但是并没有突破方差分析三个原有的假设条件,即正态性.方差齐性和独立性,这其中独立性要求较严格,我们知道方差分析的基本思想其实就是细分,将所 ...

随机推荐

  1. Solr服务在Linux上的搭建

    一.系统环境 注:欢迎大家转载,非商业用途请在醒目位置注明本文链接和作者名dijia478即可,商业用途请联系本人dijia478@163.com. CentOS-6.7-i386-bin-DVD1 ...

  2. 》》vue

    <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title&g ...

  3. Android Things 专题6 完整的栗子:运用TensorFlow解析图像

    文| 谷歌开发技术专家 (GDE) 王玉成 (York Wang) 前面絮叨了这么多.好像还没有一个整体的概念.我们怎样写一个完整的代码呢? 如今深度学习非常火,那我们就在Android Things ...

  4. gulp管理静态资源缓存

    前端项目在版本迭代的时候,难免会遇到静态缓存的问题,明明开发的是ok的,但是一部署到服务器上,发现页面变得乱七八糟,这是由于静态缓存引起的. 从上面这张图片可以看出,浏览器加载css,js等资源时,s ...

  5. Java项目中使用Redis缓存案例

    缓存的目的是为了提高系统的性能,缓存中的数据主要有两种: 1.热点数据.我们将经常访问到的数据放在缓存中,降低数据库I/O,同时因为缓存的数据的高速查询,加快整个系统的响应速度,也在一定程度上提高并发 ...

  6. redis主从配置+哨兵模式

    1.搭建redis主从,一个master两个slave,加一个哨兵监听(sentinel),可以新建三个虚拟机,模拟环境,我的电脑没那么多虚拟机,就在一台虚拟机上弄的. 2.安装redis,如果是三台 ...

  7. 小白的Python之路 day1 字符编码

    字符编码 python解释器在加载 .py 文件中的代码时,会对内容进行编码(默认ascill) ASCII(American Standard Code for Information Interc ...

  8. 添加组groupadd,修改组groupmod,删除组groupdel,将用户加入删除组gpasswd

    groupadd -g GID :指定组id groupmod -g GID :修改组id -n 新组名 :修改组名 groupmod -n newname oldname groupdel grou ...

  9. [array] leetcode - 35. Search Insert Position - Easy

    leetcode - 35. Search Insert Position - Easy descrition Given a sorted array and a target value, ret ...

  10. geoserver集成以及部署arcgis server瓦片数据

    关注重点: 一般来说,geoserver是不支持arcgis server格式瓦片数据部署的,至少我本机的geoserver版本(2.8.5)以及之前的版本并没有集成进来,不知道目前官网的最新版是否支 ...