1444: [Jsoi2009]有趣的游戏

4820: [Sdoi2017]硬币游戏

这两道题都是关于不断随机生成字符后求出现给定字符串的概率的问题。

第一题数据范围较小,将串建成AC自动机以后,以AC自动机上每个点为一个未知数,列出方程高斯消元求解即可,时间复杂度$O(n^{3}m^{3})$。

#include<queue>
#include<cstdio>
#include<algorithm>
#define MN 21
#define ld double
#define eps 1e-12
using namespace std; struct na{int t[],bo,f;na(){bo=;}}t[MN*MN];
int n,m,l,mo[MN],num=,p[MN],q[MN];
char s[];
int insert(char s[]){
int i=,j=;
for (;s[i];j=t[j].t[s[i]-'A'],i++)
if (!t[j].t[s[i]-'A']) t[j].t[s[i]-'A']=++num;
t[j].bo=;
for (i=;s[i];i++) if (p[s[i]-'A']==) return -;
return j;
}
queue<int> _q;
ld a[MN*MN][MN*MN],S;
ld abs(ld a){return a<?-a:a;}
inline void Gauss(){
int i,j,k;
for (i=;i<=num;i++){
for (j=i;j<=num;j++) if (abs(a[j][i])>eps) break;
for (k=;k<=num+;k++) swap(a[i][k],a[j][k]);
for (j=;j<=num;j++)
if (j!=i)
for (S=a[j][i]/a[i][i],k=;k<=num+;k++) a[j][k]-=S*a[i][k];
}
}
int main(){
register int i,j;
scanf("%d%d%d",&n,&l,&m);
for (i=;i<m;i++) scanf("%d%d",&p[i],&q[i]);
for (i=;i<n;i++) scanf("%s",s),mo[i]=insert(s);
t[].f=;
for (i=;i<m;i++) if (t[].t[i]) _q.push(t[].t[i]),t[t[].t[i]].f=;
while (!_q.empty()){
int k=_q.front();_q.pop();
for (i=;i<m;i++)
if (t[k].t[i]){
for (j=t[k].f;j&&!t[j].t[i];j=t[j].f);
t[t[k].t[i]].f=t[j].t[i];
_q.push(t[k].t[i]);
}
}
for (int k=;k<=num;a[k][k]-=.,k++)
if (!t[k].bo)
for (i=;i<m;i++){
for (j=k;j&&!t[j].t[i];j=t[j].f);
j=t[j].t[i];
a[j][k]+=.*p[i]/q[i];
}
a[][num+]=-;
Gauss();
for (i=;i<n;i++) if (mo[i]==-) puts("0.00");else printf("%.2lf\n",a[mo[i]][num+]/a[mo[i]][mo[i]]+eps);
}

1444: [Jsoi2009]有趣的游戏

第二题,数据范围较大,直接建AC自动机必定会TLE,所以考虑化简。我们需要的只是n个目标状态的答案,而不需要AC自动机上其他点的答案,那么这些点是否可以合并起来,统一考虑呢?

以样例为例:

$S_1=THT,S_2=TTH,S_3=HTT$

考虑一个状态X,表示所有未达到目标状态的字符串。

那么若在X后面接上一个$S_1$,肯定就到达了目标状态,也可能我们还没填完$S_1$我们就达成了目标状态,这些一起考虑起来,可以得到

$$\frac{X}{2^{3}}=S_1+\frac{S_1}{2^{2}}+\frac{S_2}{2}+\frac{S_3}{2^{2}}$$

这是什么意思?XTHT有可能是以下几种情况(我们用$F_{S_i}$表示$S_i$的出现概率)

XTHT =$F_{S_1}$

YTHT   HT=$F_{S_1}$   HT(X以TH结尾,即X=YTH)

YTTH   T=$F_{S_2}$   T(X以T结尾,即X=YT)

YHTT   HT=$F_{S_2}$   HT(X以HT结尾,即X=YHT)

额外多出来的x个字符就需要花费$\frac{1}{2^{x}}$的概率去生成它,也就很显然地对应了上面的式子。

再考虑在X后面接上$S_2$和$S_3$我们又得到两个方程,再加上$\sumF_{S_i}$,一共4(n+1)个方程,解3(n)个变量刚刚好。

另外如果高斯消元的时候你是用的eps来找第一个非0位置,那么很有可能爆精度,这时候你需要将其修改为找到绝对值最大的位置(虽然不知道为什么这样就可以了)。

#include<queue>
#include<cstdio>
#include<algorithm>
#define MN 321
#define ld double
#define eps 1e-12
using namespace std; int n,m,l,mo[MN],num=,ne[MN<<];
char s[MN][MN],c[MN<<];
ld a[MN][MN],S,two[MN];
ld abs(ld a){return a<?-a:a;}
inline void Gauss(){
int i,j,k;
for (i=;i<=num;i++){
for (j=i;j<=num;j++) if (abs(a[j][i])>eps) break;
for (k=;k<=num+;k++) swap(a[i][k],a[j][k]);
for (j=;j<=num;j++)
if (j!=i)
for (S=a[j][i]/a[i][i],k=;k<=num+;k++) a[j][k]-=S*a[i][k]; }
}
int main(){
register int i,j,k,l;
scanf("%d%d",&n,&m);
for (i=;i<=n;i++) scanf("%s",s[i]); for (two[]=,i=;i<=m;i++) two[i]=two[i-]*0.5;
for (i=;i<=n;i++)
for (a[i][]=-two[m],j=;j<=n;j++){
for (k=;k<m;k++) c[k]=s[i][k],c[m+m-k-]=s[j][m-k-];c[m+m]=;
ne[]=-;
for (k=;k<m+m;ne[k]=l+(c[l+]==c[k]),k++)
for (l=ne[k-];l!=-&&c[l+]!=c[k];l=ne[l]);
for (k=ne[k-];k!=-;k=ne[k])
if (k<m) a[i][j]+=two[m--k];
} for (i=;i<=n+;i++) a[][i]=;
num=n;Gauss();
for (i=;i<=n;i++) printf("%.8lf\n",a[i][n+]/a[i][i]+eps);
}

4820: [Sdoi2017]硬币游戏

BZOJ:4820: [Sdoi2017]硬币游戏&&BZOJ:1444: [Jsoi2009]有趣的游戏(高斯消元求概率)的更多相关文章

  1. [BZOJ 4820] [SDOI2017] 硬币游戏(高斯消元+概率论+字符串hash)

    [BZOJ 4820] [SDOI2017] 硬币游戏(高斯消元+概率论+字符串hash) 题面 扔很多次硬币后,用H表示正面朝上,用T表示反面朝上,会得到一个硬币序列.比如HTT表示第一次正面朝上, ...

  2. BZOJ 1444:[JSOI2009]有趣的游戏

    BZOJ 1444:[JSOI2009]有趣的游戏 题目链接 首先我们建出Trie图,然后高斯消元. 我们设\(f_i\)表示经过第\(i\)个点的期望次数: \[ f_x=\sum i\cdot p ...

  3. BZOJ 1444: [Jsoi2009]有趣的游戏 [AC自动机 高斯消元]

    1444: [Jsoi2009]有趣的游戏 题意:每种字母出现概率\(p_i\),有一些长度len的字符串,求他们出现的概率 套路DP的话,\(f[i][j]\) i个字符走到节点j的概率,建出转移矩 ...

  4. BZOJ 1444 [Jsoi2009]有趣的游戏 (AC自动机 + 概率DP + Gauss)

    1444: [Jsoi2009]有趣的游戏 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1382  Solved: 498[Submit][Statu ...

  5. 1444: [Jsoi2009]有趣的游戏

    1444: [Jsoi2009]有趣的游戏 链接 分析: 如果一个点回到0号点,那么会使0号点的概率增加,而0号点的概率本来是1,不能增加,所以这题用期望做. 设$x_i$表示经过i的期望次数,然后初 ...

  6. 【bzoj3105】[cqoi2013]新Nim游戏 高斯消元求线性基

    题目描述 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴.可以只拿一根,也可以拿走整堆火柴,但不能同时从 ...

  7. BZOJ.4820.[SDOI2017]硬币游戏(思路 高斯消元 哈希/AC自动机/KMP)

    BZOJ 洛谷 建出AC自动机,每个点向两个儿子连边,可以得到一张有向图.参照 [SDOI2012]走迷宫 可以得到一个\(Tarjan\)+高斯消元的\(O((nm)^3)\)的做法.(理论有\(6 ...

  8. BZOJ 4820 [SDOI2017] 硬币游戏

    Description 周末同学们非常无聊,有人提议,咱们扔硬币玩吧,谁扔的硬币正面次数多谁胜利.大家纷纷觉得这个游戏非常符合同学们的特色,但只是扔硬币实在是太单调了.同学们觉得要加强趣味性,所以要找 ...

  9. ●BZOJ 1444 [Jsoi2009]有趣的游戏

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=1444题解.1: 概率dp,矩阵乘法,快速幂. 对所有串建立AC自动机, 那么如果在trie树 ...

随机推荐

  1. 【bird-front】前端框架介绍

    bird前端项目,基于react.antd.antd-admin,封装常用数据组件,细粒度权限解决方案. bird-front是基于react的后台管理系统前端项目,框架构建部分严重借鉴于antd管理 ...

  2. Android LayoutInflator 解析

    一.实际使用场景引入: 在ListView的Adapter的getView方法中基本都会出现,使用inflate方法去加载一个布局,用于ListView的每个Item的布局.  同样,在使用ViewP ...

  3. form表单与后台请求的关系

    开发中遇到一个问题,说这个问题前先看一下代码 后台方面, get请求: post请求: 前端方面: 问题是:当我点击提交表单后,页面会跳转成这样: 经过多番测试,原因竟是form表单的提交问题,如果用 ...

  4. gitlab 接入 openldap、AD

    =============================================== 20171009_第2次修改                       ccb_warlock === ...

  5. pc端常用导航

    应为经常要写网站,导航部分基本一样,没必要每次都写一遍,下次直接来复制: HTML: <nav> <div class="clearfix container"& ...

  6. css3特效样式库

    直接调用样式类即可: /* animation */ .a-bounce,.a-flip,.a-flash,.a-shake,.a-swing,.a-wobble,.a-ring{-webkit-an ...

  7. Tengine 安装配置全过程(nginx 同理)

    1.安装必要的编译环境好 yum update yum install gcc gcc-c++ autoconf automake 2.安装需要的组件 A.PCRE PCRE(Perl Compati ...

  8. Keras:基于Theano和TensorFlow的深度学习库

    catalogue . 引言 . 一些基本概念 . Sequential模型 . 泛型模型 . 常用层 . 卷积层 . 池化层 . 递归层Recurrent . 嵌入层 Embedding 1. 引言 ...

  9. Python的伪私有属性

    什么是伪私有属性? 在Python中,没有类似 private 之类的关键字来声明私有方法或属性. Python中要声明私有属性,需要在属性前加上双下划线(但是结尾处不能有双下划线),如:self._ ...

  10. linux系统编程:自己动手写一个who命令

    who命令的作用用于显示当前有哪些用户登录到系统. 这个命令执行的原理是读取了系统上utmp文件中记录的所有登录信息,直接显示出来的 utmp文件在哪里呢? man who的时候,在手册下面有这么一段 ...