1801: [Ahoi2009]chess 中国象棋

题目:传送门

题解:

   表示自己的DP菜的抠脚

   %题解...

   定义f[i][j][k]表示前i行 仅有一个棋子的有j列 有两个棋子的有k个 的方案数 (对于任意的一行或者一列,棋子数都不会超过2)

   那么以下的转移其实就很容易YY了:

   对于当前的第i行,一共分为6种情况:

   1、啥玩意儿都不填 f[i][j][k]=(f[i][j][k]+f[i-1][j-1][k]*(m-j+1-k))%mod;

   2、只填一个棋子,并且填在当前没有棋子的一列 f[i][j][k]=(f[i][j][k]+f[i-1][j-1][k]*(m-j+1-k))%mod;

    因为对于上一个状态来说,只有一个棋子的就多了一列啊

   3、只填一个棋子,并且填在当前仅有一个棋子的一列 f[i][j][k]=(f[i][j][k]+f[i-1][j+1][k-1]*(j+1))%mod;

    很明显两个棋子的列数多了一,且一个棋子的列数少了一

   以下三种和前面的都一样,就不解释了:

   4、填两个棋子,并且都填在当前没有棋子的列上 f[i][j][k]=(f[i][j][k]+f[i-1][j-2][k]*calc(m-j+2-k))%mod;

   5、填两个棋子,一个填在有一个棋子的列上,一个填在没有棋子的列上 f[i][j][k]=(f[i][j][k]+f[i-1][j][k-1]*j*(m-j-k+1))%mod;

   6、填两个棋子,都填在有一个棋子的列上 f[i][j][k]=(f[i][j][k]+f[i-1][j+2][k-2]*calc(j+2))%mod;

   PS:calc(int x){return x*(x-1)/2;}

代码:

 #include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#define qread(x) x=read()
using namespace std;
typedef long long LL;
const LL mod=;
inline int read()
{
int f=,x=;char ch;
while(ch<'' || ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>='' && ch<=''){x=x*+ch-'';ch=getchar();}
return f*x;
}
int n,m;
LL f[][][];//f[i][j][k] 表示前i行 仅有一个棋子的有j列 有两个棋子的有k个 的方案数
LL calc(int x){return x*(x-)/;}
int main()
{
qread(n);qread(m);
memset(f,,sizeof(f));
f[][][]=1LL;
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
for(int k=;k<=m-j;k++)
{
f[i][j][k]=f[i-][j][k];
if(j>)f[i][j][k]=(f[i][j][k]+f[i-][j-][k]*(m-j+-k))%mod;
if(k>)f[i][j][k]=(f[i][j][k]+f[i-][j+][k-]*(j+))%mod;
if(j>)f[i][j][k]=(f[i][j][k]+f[i-][j-][k]*calc(m-j+-k))%mod;
if(j> && k>)f[i][j][k]=(f[i][j][k]+f[i-][j][k-]*j*(m-j-k+))%mod;
if(k>)f[i][j][k]=(f[i][j][k]+f[i-][j+][k-]*calc(j+))%mod;
}
LL ans=;
for(int j=;j<=m;j++)
for(int k=;k<=m-j;k++)
ans=(ans+f[n][j][k])%mod;
printf("%lld\n",ans);
return ;
}

感觉很毒瘤。。。

bzoj1801: [Ahoi2009]chess 中国象棋(DP)的更多相关文章

  1. bzoj1801: [Ahoi2009]chess 中国象棋 dp

    题意:在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请问有多少种放置方法,中国像棋中炮的行走方式大家应该很清楚吧. 题解:dp[i][j][k]表示到了第i行,有j列 ...

  2. BZOJ1801 Ahoi2009 chess 中国象棋 【DP+组合计数】*

    BZOJ1801 Ahoi2009 chess 中国象棋 Description 在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请问有多少种放置方法,中国像棋中炮的行 ...

  3. 【BZOJ1801】[Ahoi2009]chess 中国象棋 DP

    [BZOJ1801][Ahoi2009]chess 中国象棋 Description 在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请问有多少种放置方法,中国像棋中炮 ...

  4. BZOJ1801 [Ahoi2009]chess 中国象棋(DP, 计数)

    题目链接 [Ahoi2009]chess 中国象棋 设$f[i][j][k]$为前i行,$j$列放了1个棋子,$k$列放了2个棋子的方案数 分6种情况讨论,依次状态转移. #include <b ...

  5. BZOJ 1801: [Ahoi2009]chess 中国象棋( dp )

    dp(i, j, k)表示考虑了前i行, 放了0个炮的有j列, 放了1个炮的有k列. 时间复杂度O(NM^2) -------------------------------------------- ...

  6. [luogu2051][bzoj1801][AHOI2009]chess中国象棋【动态规划】

    题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法.大家肯定很清楚,在中国象棋中炮的行走方式是 ...

  7. BZOJ1801 [Ahoi2009]chess 中国象棋 【dp】

    题目 在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请问有多少种放置方法,中国像棋中炮的行走方式大家应该很清楚吧. 输入格式 一行包含两个整数N,M,中间用空格分开. ...

  8. BZOJ1801 [Ahoi2009]chess 中国象棋 动态规划

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1801 题意概括 在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请 ...

  9. BZOJ1801:[Ahoi2009]chess 中国象棋

    Time Limit: 10 Sec  Memory Limit: 64 MB Description 在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请问有多少种放置 ...

随机推荐

  1. [转]收集android上开源的酷炫的交互动画和视觉效果

    原文链接:http://www.open-open.com/lib/view/open1411443332703.html 描述:收集android上开源的酷炫的交互动画和视觉效果. 1.交互篇 2. ...

  2. Java IO(三) 之 FileInputStream

    前言: 对于文件系统中的文件.都能够使用FileInputStream流类以二进制的形式进行读取.可是因为Java本身的定位在JVM之上,没有处理计算机底层的能力.因此一些涉及底层处理的方法都是使用n ...

  3. 从字节码指令看重写在JVM中的实现

    Java是解释执行的.包含动态链接的特性.都给解析或执行期间提供了非常多灵活扩展的空间.面向对象语言的继承.封装和多态的特性,在JVM中是怎样进行编译.解析,以及通过字节码指令怎样确定方法调用的版本号 ...

  4. 关闭 sftp

    vi /etc/ssh/sshd_config 注释掉这行Subsystem  sftp    /usr/libexec/openssh/sftp-server /etc/rc.d/init.d/ss ...

  5. Java虚拟机的类载入机制

    Java虚拟机类载入过程是把Class类文件载入到内存.并对Class文件里的数据进行校验.转换解析和初始化,终于形成能够被虚拟机直接使用的java类型的过程. 在载入阶段,java虚拟机须要完毕下面 ...

  6. iOS CoreData 介绍和使用(以及一些注意事项)

    iOS CoreData介绍和使用(以及一些注意事项) 最近花了一点时间整理了一下CoreData,对于经常使用SQLite的我来说,用这个真的有点用不惯,个人觉得实在是没发现什么亮点,不喜勿喷啊.不 ...

  7. 人生苦短,请用 Chrome!

    在网络层,互联网提供所有应用程序都要使用的两种类型的服务,尽管目前理解这些服务的细节并不重要,但在所有TCP/IP概述中,都不能忽略他们: 无连接分组交付服务(Connectionless Packe ...

  8. 百度编辑器UEditor修改成支持物理路径

    一.前言 我虽然工作了2年.有快1年没有做后台的开发了.最近要写个新项目用到富文本编辑器,然后选择用了百度的UEditor.在使用过程中感觉有些不太好.然后就自己手动改一下源码,写得不好请见谅.这只是 ...

  9. sql server Delete误操作后如何恢复数据

    声明:本文是根据别人的经验https://blog.csdn.net/dba_huangzj/article/details/8491327写的总结 说明:update和delete时没有加where ...

  10. APICloud关闭Key Building Resolve

    顶部菜单 --> 扩展 --> keybinding resolver --> toggle