BZOJ3143: [Hnoi2013]游走(期望DP 高斯消元)
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 3597 Solved: 1618
[Submit][Status][Discuss]
Description
一个无向连通图,顶点从1编号到N,边从1编号到M。
小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分数。当小Z 到达N号顶点时游走结束,总分为所有获得的分数之和。
现在,请你对这M条边进行编号,使得小Z获得的总分的期望值最小。
Input
第一行是正整数N和M,分别表示该图的顶点数 和边数,接下来M行每行是整数u,v(1≤u,v≤N),表示顶点u与顶点v之间存在一条边。 输入保证30%的数据满足N≤10,100%的数据满足2≤N≤500且是一个无向简单连通图。
Output
仅包含一个实数,表示最小的期望值,保留3位小数。
Sample Input
2 3
1 2
1 3
Sample Output
HINT
Source
#include<cstdio>
#include<cstring>
#include<algorithm>
#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<23,stdin),p1==p2)?EOF:*p1++)
using namespace std;
const int MAXN=1e6+;
const double eps=1e-;
char buf[<<],*p1=buf,*p2=buf;
inline int read()
{
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int N,M;
struct node
{
int u,v,nxt;
}edge[MAXN];
int head[MAXN],num=;
inline void AddEdge(int x,int y)
{
edge[num].u=x;
edge[num].v=y;
edge[num].nxt=head[x];
head[x]=num++;
}
double f[][],ans[MAXN],E[MAXN],inder[MAXN];
int S[MAXN],T[MAXN];
int dcmp(double x)
{
if(x<eps&&x>-eps) return ;
else return x<?-:;
}
void Gauss()
{ for(int i=;i<N;i++)
{
int mx=i;
for(int j=i+;j<N;j++)
if( dcmp(f[j][i]-f[mx][i])> ) mx=j;
if(mx!=i) swap(f[i],f[mx]);
for(int j=i+;j<N;j++)
{
double tmp=f[j][i]/f[i][i];
for(int k=i;k<=N;k++)
f[j][k]-=(double)tmp*f[i][k];
}
}
for(int i=N-;i>=;i--)
{
for(int j=i+;j<N;j++)
f[i][N]-=ans[j]*f[i][j];
ans[i]=f[i][N]/f[i][i];
}
}
int main()
{
#ifdef WIN32
freopen("a.in","r",stdin);
#else
#endif
memset(head,-,sizeof(head));
N=read(),M=read();
for(int i=;i<=M;i++)
{
int x=read(),y=read();
AddEdge(x,y);AddEdge(y,x);
inder[x]++;inder[y]++;
S[i]=x;T[i]=y;
}
f[][N]=;
for(int i=;i<N;i++) f[i][i]=;
for(int i=;i<N;i++)
for(int j=head[i];j!=-;j=edge[j].nxt)
if(edge[j].v!=N)
f[i][edge[j].v]=(double)-1.00/inder[edge[j].v];
Gauss();
for(int i=;i<=M;i++)
E[i]=ans[S[i]]/inder[S[i]]+ans[T[i]]/inder[T[i]];
sort(E+,E+M+);
double out=;
for(int i=;i<=M;i++)
out+=E[i]*(M-i+);
printf("%.3lf",out);
return ;
}
BZOJ3143: [Hnoi2013]游走(期望DP 高斯消元)的更多相关文章
- 【BZOJ3143】[Hnoi2013]游走 期望DP+高斯消元
[BZOJ3143][Hnoi2013]游走 Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 ...
- bzoj 3143 [Hnoi2013]游走 期望dp+高斯消元
[Hnoi2013]游走 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3394 Solved: 1493[Submit][Status][Disc ...
- 2018.09.23 bzoj3143: [Hnoi2013]游走(dp+高斯消元)
传送门 显然只需要求出所有边被经过的期望次数,然后贪心把边权小的边定城大的编号. 所以如何求出所有边被经过的期望次数? 显然这只跟边连接的两个点有关. 于是我们只需要求出两个点被经过的期望次数. 对于 ...
- bzoj3143 游走 期望dp+高斯消元
题目传送门 题意: 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得 ...
- bzoj3143: [Hnoi2013]游走(贪心+高斯消元)
考虑让总期望最小,那么就是期望经过次数越多的边贪心地给它越小的编号. 怎么求每条边的期望经过次数呢?边不大好算,我们考虑计算每个点的期望经过次数f[x],那么一条边的期望经过次数就是f[x]/d[x] ...
- BZOJ 3143: [Hnoi2013]游走 [概率DP 高斯消元]
一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分 ...
- 【洛谷3232】[HNOI2013] 游走(贪心+高斯消元)
点此看题面 大致题意: 一个无向连通图,小\(Z\)从\(1\)号顶点出发,每次随机选择某条边走到下一个顶点,并将\(ans\)加上这条边的编号,走到\(N\)号顶点时结束.请你对边进行编号,使总分期 ...
- BZOJ_3143_[Hnoi2013]游走_期望DP+高斯消元
BZOJ_3143_[Hnoi2013]游走_期望DP+高斯消元 题意: 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机 ...
- [BZOJ3143][HNOI2013]游走(期望+高斯消元)
3143: [Hnoi2013]游走 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3576 Solved: 1608[Submit][Status ...
随机推荐
- Apex语言(九)类的方法
1.方法 方法是对象的行为.如下表: 看书,编程,打球就是方法. 2.创建方法 [格式] 访问修饰符 返回值类型 方法名(形式参数列表){ 方法体; } 访问修饰符:可以为类方法指定访问级别. 例如, ...
- java将父类所有的属性COPY到子类中
public class FatherToChildUtils { /* * 将父类所有的属性COPY到子类中. * 类定义中child一定要extends father: * 而且child和fat ...
- centos6.5 安装redis自动启动
1.安装需要的支持环境 在安装Redis之前首要先做的是安装Unix的 Tcl工具 ,如果不安装的话后期将无法对Redis进行测试.在后期执行make test的时候返回如下错误信息: You nee ...
- GOF23设计模式之代理模式
GOF23设计模式之代理模式 核心作用:通过代理,控制对对象的访问.可以详细控制访问某个(某类)对象的方法,在调用这个方法前做前置处理,调用这个方法后做后置处理(即:AOP的微观实现) AOP(Asp ...
- Spring Boot学习总结(3)——SpringBoot魅力所在
使用Java做Web应用开发已经有近20年的历史了,从最初的Servlet1.0一步步演化到现在如此多的框架,库以及整个生态系统.经过这么长时间的发展,Java作为一个成熟的语言,也演化出了非常成熟的 ...
- Spring框架自学之路——简易入门
目录 目录 介绍 Spring中的IoC操作 IoC入门案例 Spring的bean管理配置文件 Bean实例化的方式 Bean标签的常用属性 属性注入 使用有参构造函数注入属性 使用set方法注入属 ...
- boost中的有用工具assign和uuid
assign assign重载'+'=和','实现连续赋值 assign不仅支持所有8个STL标准容器(vector.string.deque.list.set.multiset.map.multim ...
- 【SpringMVC架构】SpringMVC入门实例,解析工作原理(二)
上篇博文,我们简单的介绍了什么是SpringMVC.这篇博文.我们搭建一个简单SpringMVC的环境,使用非注解形式实现一个HelloWorld实例,从简单入手,逐步深入. 环境准备 我们须要有主要 ...
- luogu1965 转圈游戏
题目大意 n 个小伙伴(编号从 0 到 n-1)围坐一圈玩游戏.按照顺时针方向给 n 个位置编号,从0 到 n-1.最初,第 0 号小伙伴在第 0 号位置,第 1 号小伙伴在第 1 号位置,--,依此 ...
- Windows下搭建ffmpeg+VS2008开发环境详细教程【转】
本文转载自:http://www.voidcn.com/article/p-vxdntdgc-bkq.html 由于个人是从事音视频开发相关的工作,所以也把自己的一些过程写下来,方便大家以及自己查看, ...