Free from square

Problem Description
There is a set including all positive integers that are not more then n. HazelFan wants to choose some integers from this set, satisfying: 1. The number of integers chosen is at least 1 and at most k. 2. The product of integers chosen is 'free from square', which means it is divisible by no square number other than 1. Now please tell him how many ways are there to choose integers, module 10^9+7.
 
Input
The first line contains a positive integer T(1≤T≤5), denoting the number of test cases.
For each test case:
A single line contains two positive integers n,k(1≤n,k≤500).
 
Output
For each test case:
A single line contains a nonnegative integer, denoting the answer.
 
Sample Input
2
4 2
6 4
 
Sample Output
6
19
 
题解:
  n个数
  首先你明白,1~n个数,没有数是包含超过两个 大于根号n 的质因子的,
  小于根号n的质因子只有8个,所以做这个题的思路就有了
  对于只含有小于根号n的 那些质因子的那些数,我们状态压缩DP就好了
  对于包含大于根号n 的 那些质因子的 那些数,我们分组背包, 也就是说 某些包含同一个 大于根号n的 因子 放在一组里边
#include<bits/stdc++.h>
using namespace std;
#pragma comment(linker, "/STACK:102400000,102400000")
#define ls i<<1
#define rs ls | 1
#define mid ((ll+rr)>>1)
#define pii pair<int,int>
#define MP make_pair
typedef long long LL;
typedef unsigned long long ULL;
const long long INF = 1e18+1LL;
const double pi = acos(-1.0);
const int N = 5e2+, M = 1e3+,inf = 2e9,mod = 1e9+; int p[] = {,,,,,,,};
vector<int > fi,se[N];
int dp[][N][(<<)+],f[N]; int solve(int n,int K) {
fi.clear();
memset(dp,,sizeof(dp));
for(int i = ; i <= n; ++i) se[i].clear(),f[i] = ;
fi.push_back();
for(int i = ; i <= n; ++i) {
int tmp = i,now = ,ok = ;
for(int j = ; j < ; ++j) {
int _ = ;
while(tmp % p[j] == ) _++,now|=(<<j),tmp/=p[j];
if(_ >= ) ok = ;
}
if(ok) {
f[i] = now;
if(tmp!=) se[tmp].push_back(i);
else fi.push_back(i);
}
}
int now = ;
dp[][][] = ;
for(int i = ; i < fi.size(); ++i) { now ^= ;memset(dp[now],,sizeof(dp[now]));
for(int k = ; k <= K; ++k) {
for(int j = ; j < (<<); ++j) { dp[now][k][j] += dp[now^][k][j];
dp[now][k][j] %= mod; if((j&f[fi[i]])) continue; dp[now][k+][j|f[fi[i]]] += dp[now^][k][j];
dp[now][k+][j|f[fi[i]]] %= mod; }
}
} for(int i = ; i <= n; ++i) {
if(se[i].size() == ) continue;
// cout<<"shit"<<endl;
now^=;memset(dp[now],,sizeof(dp[now]));
for(int h = ; h <= K; ++h) {
for(int k = ; k < (<<); ++k) { dp[now][h][k] += dp[now^][h][k];
dp[now][h][k] %= mod; for(int j = ; j < se[i].size(); ++j) {
if((f[se[i][j]]&k)) continue;
dp[now][h+][f[se[i][j]]|k] += dp[now^][h][k];
dp[now][h+][f[se[i][j]]|k] %= mod;
}
}
}
} int ans = ;
for(int i = ; i <= K; ++i) {
for(int j = ; j < (<<); ++j)
ans += dp[now][i][j],ans %= mod;
}
return ans;
} int main() {
int T,n,k;
scanf("%d",&T);
while(T--) {
scanf("%d%d",&n,&k);
printf("%d\n",solve(n,k));
}
return ;
}
/*
2
4 2
6 4
*/

HDU 6125 Free from square 状态压缩DP + 分组背包的更多相关文章

  1. HDU 6125 Free from square (状压DP+分组背包)

    题目大意:让你在1~n中选择不多于k个数(n,k<=500),保证它们的乘积不能被平方数整除.求选择的方案数 因为质数的平方在500以内的只有8个,所以我们考虑状压 先找出在n以内所有平方数小于 ...

  2. hdu 6125 -- Free from square(状态压缩+分组背包)

    题目链接 Problem Description There is a set including all positive integers that are not more then n. Ha ...

  3. hdu 5025 Saving Tang Monk 状态压缩dp+广搜

    作者:jostree 转载请注明出处 http://www.cnblogs.com/jostree/p/4092939.html 题目链接:hdu 5025 Saving Tang Monk 状态压缩 ...

  4. HDU 3681 Prison Break(状态压缩dp + BFS)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3681 前些天花时间看到的题目,但写出不来,弱弱的放弃了.没想到现在学弟居然写出这种代码来,大吃一惊附加 ...

  5. HDU 1074 Doing Homework【状态压缩DP】

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1074 题意: 给定作业截止时间和完成作业所需时间,比截止时间晚一天扣一分,问如何安排作业的顺序使得最 ...

  6. HDU 1074 Doing Homework (状态压缩DP)

    Doing Homework Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)To ...

  7. HDU 6125 Free from square (状压DP+背包)

    题意:问你从 1 - n 至多选 m 个数使得他们的乘积不能整除完全平方数. 析:首先不能整除完全平方数,那么选的数肯定不能是完全平方数,然后选择的数也不能相同的质因子. 对于1-500有的质因子至多 ...

  8. HDU 1074 Doing Homework ——(状态压缩DP)

    考虑到n只有15,那么状压DP即可. 题目要求说输出字典序最小的答案的顺序,又考虑到题目给出的字符串本身字典序是递增的,那么枚举i的时候倒着来即可.因为在同样完成的情况下,后选字典序大的,小的字典序就 ...

  9. HDU 1074 (状态压缩DP)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1074 题目大意:有N个作业(N<=15),每个作业需耗时,有一个截止期限.超期多少天就要扣多少 ...

随机推荐

  1. 【Luogu】P1972HH的项链(链表+树状数组)

    题目链接 难题,所以会讲得细一些. 首先我们想如何统计区间[l,r]内不同贝壳的个数. 第一个思路就是线段树/树状数组,query(1,r)-query(1,l-1)对不对? 然而这样是不对的. 然后 ...

  2. BZOJ1926 [Sdoi2010]粟粟的书架 【主席树 + 二分 + 前缀和】

    题目 幸福幼儿园 B29 班的粟粟是一个聪明机灵.乖巧可爱的小朋友,她的爱好是画画和读书,尤其喜欢 Thomas H. Co rmen 的文章.粟粟家中有一个 R行C 列的巨型书架,书架的每一个位置都 ...

  3. 洛谷P1447 - [NOI2010]能量采集

    Portal Description 给出\(n,m(n,m\leq10^5),\)计算\[ \sum_{i=1}^n \sum_{j=1}^m (2gcd(i,j)-1)\] Solution 简单 ...

  4. 大数(bzoj 4542)

    /* 想了半天莫队,不知道咋转移,需要动下脑子. 有一个很显然的结论是如果(l,r)是P的倍数,那么s[l...n]%P=s[r+1...n]%P. 根据这个东西,我们预处理出所有的后缀%P的余数,接 ...

  5. 乘法运算(codevs 3254)

    题目描述 Description 编制一个乘法运算的程序. 从键盘读入2个100以内的正整数,进行乘法运算并以竖式输出. 输入描述 Input Description 输入只有一行,是两个用空格隔开的 ...

  6. msp430项目编程43

    msp430综合项目---蓝牙控制直流电机调速系统43 1.电路工作原理 2.代码(显示部分) 3.代码(功能实现) 4.项目总结

  7. Redis数据结构之简单动态字符串

    Redis没有直接使用C语言传统的字符串表示(以空字符结尾的字符数组), 而是自己构建了一种名为简单动态字符串(simple dynamic string,SDS)的抽象类型, 并将SDS用作Redi ...

  8. hdu 4857 逆拓扑+大根堆(priority_queue)

    题意:排序输出:在先满足定约束条件下(如 3必需在1前面,7必需在4前面),在满足:1尽量前,其次考虑2,依次.....(即有次约束). 开始的时候,只用拓扑,然后每次在都可以选的时候,优先考虑小的, ...

  9. 《从零开始搭建游戏服务器》Eclipse和Tomcat安装配置

    我选择用来进行服务器开发的语言是Java,开发流程更接近于JavaWeb,所以需要先为开发配置一个开发环境,需要配置的主要是Eclipse和Tomcat(Web工程的容器或管理工具). 一.资源下载: ...

  10. 发布npm包

    来源:https://segmentfault.com/a/1190000010398983