Description


When participating in programming contests, you sometimes face the following problem: You know

how to calcutale the output for the given input values, but your algorithm is way too slow to ever

pass the time limit. However hard you try, you just can’t discover the proper break-off conditions that

would bring down the number of iterations to within acceptable limits.

Now if the range of input values is not too big, there is a way out of this. Let your PC rattle for half

an hour and produce a table of answers for all possible input values, encode this table into a program,

submit it to the judge, et voila: Accepted in 0.000 seconds! (Some would argue that this is cheating,

but remember: In love and programming contests everything is permitted).

Faced with this problem during one programming contest, Jimmy decided to apply such a ’technique’.

But however hard he tried, he wasn’t able to squeeze all his pre-calculated values into a program

small enough to pass the judge. The situation looked hopeless, until he discovered the following property

regarding the answers: the answers where calculated from two integers, but whenever the two

input values had a common factor, the answer could be easily derived from the answer for which the

input values were divided by that factor. To put it in other words:

Say Jimmy had to calculate a function Answer(x, y) where x and y are both integers in the range

[1, N]. When he knows Answer(x, y), he can easily derive Answer(k ∗ x, k ∗ y), where k is any integer

from it by applying some simple calculations involving Answer(x, y) and k.

For example if N = 4, he only needs to know the answers for 11 out of the 16 possible input value

combinations: Answer(1, 1), Answer(1, 2), Answer(2, 1), Answer(1, 3), Answer(2, 3), Answer(3, 2),

Answer(3, 1), Answer(1, 4), Answer(3, 4), Answer(4, 3) and Answer(4, 1). The other 5 can be derived

from them (Answer(2, 2), Answer(3, 3) and Answer(4, 4) from Answer(1, 1), Answer(2, 4) from

Answer(1, 2), and Answer(4, 2) from Answer(2, 1)). Note that the function Answer is not symmetric,

so Answer(3, 2) can not be derived from Answer(2, 3).

Now what we want you to do is: for any values of N from 1 upto and including 50000, give the

number of function Jimmy has to pre-calculate.

Input


The input file contains at most 600 lines of inputs. Each line contains an integer less than 50001 which

indicates the value of N. Input is terminated by a line which contains a zero. This line should not be

processed.

Output


For each line of input produce one line of output. This line contains an integer which indicates how

many values Jimmy has to pre-calculate for a certain value of N.

Sample Input

2
5
0

Sample Output

3
19

题解


问小于n,且两元素互素的二元组有多少个,答案为

\[(2\cdot\sum_{i=1}^{n}phi(i))-1$$(二元组可以倒置,(1,1)除外)

###参考代码
```C++
#include <queue>
#include <cmath>
#include <cstdio>
#include <complex>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#define ll long long
#define inf 1000000000
#define PI acos(-1)
#define mem(a,x) memset(a,x,sizeof(a))
using namespace std;
ll read(){
ll x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-') f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
void Out(ll a){
if(a<0) putchar('-'),a=-a;
if(a>=10) Out(a/10);
putchar(a%10+'0');
}
const int N=50005;
int phi[N];
void phi_table(int n){
for(int i=2;i<=n;i++) phi[i]=0;
phi[1]=1;
for(int i=2;i<=n;i++) if(!phi[i]){
for(int j=i;j<=n;j+=i){
if(!phi[j]) phi[j]=j;
phi[j]=phi[j]/i*(i-1);
}
}
}
int ans[N];
int main(){
phi_table(50000);
for(int i=1;i<=50000;i++) ans[i]=ans[i-1]+phi[i];
while(true){
int n=read();
if(!n) break;
Out(2*ans[n]-1);
puts("");
}
return 0;
}
```\]

【UVA 10820】Send a Table(欧拉函数)的更多相关文章

  1. Uva 10820 Send a Table(欧拉函数)

    对每个n,答案就是(phi[2]+phi[3]+...+phi[n])*2+1,简单的欧拉函数应用. #include<iostream> #include<cstdio> # ...

  2. UVa 10820 (打表、欧拉函数) Send a Table

    题意: 题目背景略去,将这道题很容易转化为,给出n求,n以内的有序数对(x, y)互素的对数. 分析: 问题还可以继续转化. 根据对称性,我们可以假设x<y,当x=y时,满足条件的只有(1, 1 ...

  3. UVa10820 Send a Table[欧拉函数]

    Send a TableInput: Standard Input Output: Standard Output When participating in programming contests ...

  4. uva 10820 (筛法构造欧拉函数)

    send a table When participating in programming contests, you sometimes face the following problem: Y ...

  5. UVA 10820 - Send a Table 数论 (欧拉函数)

    Send a Table Input: Standard Input Output: Standard Output When participating in programming contest ...

  6. UVa 10820 - Send a Table(欧拉函数)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  7. UVA 11424 GCD - Extreme (I) (欧拉函数+筛法)

    题目:给出n,求gcd(1,2)+gcd(1,3)+gcd(2,3)+gcd(1,4)+gcd(2,4)+gcd(3,4)+...+gcd(1,n)+gcd(2,n)+...+gcd(n-1,n) 此 ...

  8. UVA 11426 GCD - Extreme (II) (欧拉函数+筛法)

    题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=70017#problem/O 题意是给你n,求所有gcd(i , j)的和,其中 ...

  9. UVa 10214 (莫比乌斯反演 or 欧拉函数) Trees in a Wood.

    题意: 这道题和POJ 3090很相似,求|x|≤a,|y|≤b 中站在原点可见的整点的个数K,所有的整点个数为N(除去原点),求K/N 分析: 坐标轴上有四个可见的点,因为每个象限可见的点数都是一样 ...

  10. UVA 11426 GCD - Extreme (II) 欧拉函数

    分析:枚举每个数的贡献,欧拉函数筛法 #include <cstdio> #include <iostream> #include <ctime> #include ...

随机推荐

  1. Json----Jackson 下载地址

    下载地址: http://repo1.maven.org/maven2/com/fasterxml/jackson/

  2. vs2015未能正确加载“ProviderPackage”包

    出现以下错误的解决方案 ---------------------------Microsoft Visual Studio---------------------------未能正确加载“Prov ...

  3. 自己写一个websocket

    import socket, base64, hashlib sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.setsock ...

  4. PWA之push服务

    转载: https://www.jishux.com/p/c5735af96c39bd4a https://www.jianshu.com/p/9970a9340a2d 系列文章参考:https:// ...

  5. 155 Min Stack 最小栈

    设计一个支持 push,pop,top 操作,并能在常量时间内检索最小元素的栈.    push(x) -- 将元素x推入栈中.    pop() -- 删除栈顶的元素.    top() -- 获取 ...

  6. hdu 2604 Queuing dp找规律 然后矩阵快速幂。坑!!

    http://acm.hdu.edu.cn/showproblem.php?pid=2604 这题居然O(9 * L)的dp过不了,TLE,  更重要的是找出规律后,O(n)递推也过不了,TLE,一定 ...

  7. archsummit_bj2016

    http://bj2016.archsummit.com/schedule 大会日程 2016年12月02日,星期五 7:45-9:00 签到 8:45-9:00 开始入场 9:00-9:30 开场致 ...

  8. AJPFX总结List的三个子类的特点

    ArrayList:                        底层数据结构是数组,查询快,增删慢.                        线程不安全,效率高.              ...

  9. 5款好用的mysql客户端

    1. EMS SQL Manager for MySQL 是一款高性能MySQL数据库服务器系统的管理和开发工具.它支持从MySQL 3.23到6.0的任一版本,并支持最新版本的MySQL的特点,包括 ...

  10. laravel的scout包安装及laravel-es包安装

    安装laravel/scout 作用:搜索驱动,可随时更换驱动,上层业务逻辑可不用改变 官网文档:https://laravel-china.org/docs/laravel/5.4/scout/12 ...