Description


When participating in programming contests, you sometimes face the following problem: You know

how to calcutale the output for the given input values, but your algorithm is way too slow to ever

pass the time limit. However hard you try, you just can’t discover the proper break-off conditions that

would bring down the number of iterations to within acceptable limits.

Now if the range of input values is not too big, there is a way out of this. Let your PC rattle for half

an hour and produce a table of answers for all possible input values, encode this table into a program,

submit it to the judge, et voila: Accepted in 0.000 seconds! (Some would argue that this is cheating,

but remember: In love and programming contests everything is permitted).

Faced with this problem during one programming contest, Jimmy decided to apply such a ’technique’.

But however hard he tried, he wasn’t able to squeeze all his pre-calculated values into a program

small enough to pass the judge. The situation looked hopeless, until he discovered the following property

regarding the answers: the answers where calculated from two integers, but whenever the two

input values had a common factor, the answer could be easily derived from the answer for which the

input values were divided by that factor. To put it in other words:

Say Jimmy had to calculate a function Answer(x, y) where x and y are both integers in the range

[1, N]. When he knows Answer(x, y), he can easily derive Answer(k ∗ x, k ∗ y), where k is any integer

from it by applying some simple calculations involving Answer(x, y) and k.

For example if N = 4, he only needs to know the answers for 11 out of the 16 possible input value

combinations: Answer(1, 1), Answer(1, 2), Answer(2, 1), Answer(1, 3), Answer(2, 3), Answer(3, 2),

Answer(3, 1), Answer(1, 4), Answer(3, 4), Answer(4, 3) and Answer(4, 1). The other 5 can be derived

from them (Answer(2, 2), Answer(3, 3) and Answer(4, 4) from Answer(1, 1), Answer(2, 4) from

Answer(1, 2), and Answer(4, 2) from Answer(2, 1)). Note that the function Answer is not symmetric,

so Answer(3, 2) can not be derived from Answer(2, 3).

Now what we want you to do is: for any values of N from 1 upto and including 50000, give the

number of function Jimmy has to pre-calculate.

Input


The input file contains at most 600 lines of inputs. Each line contains an integer less than 50001 which

indicates the value of N. Input is terminated by a line which contains a zero. This line should not be

processed.

Output


For each line of input produce one line of output. This line contains an integer which indicates how

many values Jimmy has to pre-calculate for a certain value of N.

Sample Input

2
5
0

Sample Output

3
19

题解


问小于n,且两元素互素的二元组有多少个,答案为

\[(2\cdot\sum_{i=1}^{n}phi(i))-1$$(二元组可以倒置,(1,1)除外)

###参考代码
```C++
#include <queue>
#include <cmath>
#include <cstdio>
#include <complex>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#define ll long long
#define inf 1000000000
#define PI acos(-1)
#define mem(a,x) memset(a,x,sizeof(a))
using namespace std;
ll read(){
ll x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-') f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
void Out(ll a){
if(a<0) putchar('-'),a=-a;
if(a>=10) Out(a/10);
putchar(a%10+'0');
}
const int N=50005;
int phi[N];
void phi_table(int n){
for(int i=2;i<=n;i++) phi[i]=0;
phi[1]=1;
for(int i=2;i<=n;i++) if(!phi[i]){
for(int j=i;j<=n;j+=i){
if(!phi[j]) phi[j]=j;
phi[j]=phi[j]/i*(i-1);
}
}
}
int ans[N];
int main(){
phi_table(50000);
for(int i=1;i<=50000;i++) ans[i]=ans[i-1]+phi[i];
while(true){
int n=read();
if(!n) break;
Out(2*ans[n]-1);
puts("");
}
return 0;
}
```\]

【UVA 10820】Send a Table(欧拉函数)的更多相关文章

  1. Uva 10820 Send a Table(欧拉函数)

    对每个n,答案就是(phi[2]+phi[3]+...+phi[n])*2+1,简单的欧拉函数应用. #include<iostream> #include<cstdio> # ...

  2. UVa 10820 (打表、欧拉函数) Send a Table

    题意: 题目背景略去,将这道题很容易转化为,给出n求,n以内的有序数对(x, y)互素的对数. 分析: 问题还可以继续转化. 根据对称性,我们可以假设x<y,当x=y时,满足条件的只有(1, 1 ...

  3. UVa10820 Send a Table[欧拉函数]

    Send a TableInput: Standard Input Output: Standard Output When participating in programming contests ...

  4. uva 10820 (筛法构造欧拉函数)

    send a table When participating in programming contests, you sometimes face the following problem: Y ...

  5. UVA 10820 - Send a Table 数论 (欧拉函数)

    Send a Table Input: Standard Input Output: Standard Output When participating in programming contest ...

  6. UVa 10820 - Send a Table(欧拉函数)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  7. UVA 11424 GCD - Extreme (I) (欧拉函数+筛法)

    题目:给出n,求gcd(1,2)+gcd(1,3)+gcd(2,3)+gcd(1,4)+gcd(2,4)+gcd(3,4)+...+gcd(1,n)+gcd(2,n)+...+gcd(n-1,n) 此 ...

  8. UVA 11426 GCD - Extreme (II) (欧拉函数+筛法)

    题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=70017#problem/O 题意是给你n,求所有gcd(i , j)的和,其中 ...

  9. UVa 10214 (莫比乌斯反演 or 欧拉函数) Trees in a Wood.

    题意: 这道题和POJ 3090很相似,求|x|≤a,|y|≤b 中站在原点可见的整点的个数K,所有的整点个数为N(除去原点),求K/N 分析: 坐标轴上有四个可见的点,因为每个象限可见的点数都是一样 ...

  10. UVA 11426 GCD - Extreme (II) 欧拉函数

    分析:枚举每个数的贡献,欧拉函数筛法 #include <cstdio> #include <iostream> #include <ctime> #include ...

随机推荐

  1. hdu1829&&poj2492 A Bug's Life 基础种类并查集

    把性别相同的虫子放在同一个集合,然后每读入一对虫子号,判断它们在不在同一集合,在则同性别,不在则继续 #include <cstdio> #include <cstring> ...

  2. Window下完全卸载删除Nodejs

    如何从Windows中删除Node.js: 1.从卸载程序卸载程序和功能. 2.重新启动(或者您可能会从任务管理器中杀死所有与节点相关的进程). 3.寻找这些文件夹并删除它们(及其内容)(如果还有). ...

  3. Helvetic Coding Contest 2017 online mirror (teams allowed, unrated) J

    Description Heidi's friend Jenny is asking Heidi to deliver an important letter to one of their comm ...

  4. LCA UESTC 92 Journey

    题目传送门 题意:先给一棵树,然后有一条额外的边,问u走到v从现在最短的路走和原来不加边走的路节省了多少距离 分析:首先跑不加边的树的LCA,这样能求出任意两点的距离,那么现在x和y多连了一条边,如果 ...

  5. HTML form label

    在表单布局中会遇到label标签的使用,label没有任何样式效果,有触发对应表单控件功能.比如我们点击单选按钮或多选框前文字对应选项就能被选中,这个就是对文字加了<label>标签实现. ...

  6. 一个因xdata声明引起的隐含错误

    我们知道一般增强型c51自身的RAM只有128BYTES,根本不够用,所以一般在定义全局变量,静态变量时都要用XDATA作为关键字修饰数据的的存储类型.但要注意的是,定义和声明一定要一致,不然出现错误 ...

  7. Setting up IPS/inline for Linux in Suricata

    不多说,直接上干货! 见官网 https://suricata.readthedocs.io/en/latest/setting-up-ipsinline-for-linux.html Docs » ...

  8. re匹配语法-match、search和findall

    1.re.match() 匹配第一个值 列表里的值可以有多个范围,有一个符合就可以. match只匹配第一个值,所以列表里的范围是第一个值得取值范围.如果第一个值被设定好且存在,那么列表的取值范围变为 ...

  9. 在服务端C#如何利用NPOI构建Excel模板

    目前本人接触过两种模板导出的方式:(1)C#利用NPOI接口制作Excel模板,在服务端用数据渲染模板(2)在前端利用前人搭建好的框架,利用office编写xml制作模板,在客户端进行数据的渲染,导出 ...

  10. currentStyle getComputedStyle兼容

    function getStyle(obj,attr){ if(obj.currentStyle) {return obj.currentStyle[attr]} else{ return getCo ...