我们的目标是求$\sum\prod_{i=1}^m F_{a_i}$

设$f(i) = \sum\prod_{j=1}^i F_{a_j}$
那么$f(i - 1) = \sum\prod_{j=1}^{i - 1} F_{a_j}$
又有递推式$f(i) = \sum_{j = 1}^{i - 1}f(j) * F_{a_i - j}$

那么推吧
$$f(i) - f(i - 1)$$
$$=\sum_{j = 1}^{i - 1}f(j) * F_{a_i - j} - \sum_{j = 1}^{i - 2}f(j) * F_{a_i -1- j}$$
$$=f(i - 1) * F_{a_1} + \sum\prod_{i=1}^{i - 2} f(j) * (F_{a_i - j} - F_{a_i - 1 - j})$$
$$= f(i - 1) + \sum\prod_{i=1}^{i - 2} f(j) * F_{a_i - 2 - j}$$
$$= f(i - 1) + f(i - 2)$$

所以$$f(i) = 2 * f(i - 1) + f(i - 2)$$

法二:(我觉得巨妙)
设 g[i] 为i的lqp拆分的权值和,则 $g[i] = ∑f[j] * g[i-j] + f[i]$, 其中 $g[0] = 0, g[1] = 1$
设 $A = ∑f[i] * x^i , B = ∑g[i] * x^i$ ,那么 => $B = A*B + A$
解一下 B ,发现 $B = A/(1-A)$
又∵ A的闭形式是 $x/(1 - x - x^2)$ [斐波那契数的生成函数闭形式]
∴ $B = x/(1 - 2x - x^2)$ ,于是直接由B的特征根 得出g[]的递推式 => $g[i] = 2*g[i-1] + g[i-2]$.
转自金爷爷哈哈的题解

[国家集训队]整数的lqp拆分的更多相关文章

  1. BZOJ 2173 luoguo P4451 [国家集训队]整数的lqp拆分

    整数的lqp拆分 [问题描述] lqp在为出题而烦恼,他完全没有头绪,好烦啊… 他首先想到了整数拆分.整数拆分是个很有趣的问题.给你一个正整数N,对于N的一个整数拆分就是满足任意m>0,a1 , ...

  2. Luogu4451 [国家集训队]整数的lqp拆分

    题目链接:洛谷 题目大意:求对于所有$n$的拆分$a_i$,使得$\sum_{i=1}^ma_i=n$,$\prod_{i=1}^mf_{a_i}$之和.其中$f_i$为斐波那契数列的第$i$项. 数 ...

  3. 洛谷P4451 [国家集训队]整数的lqp拆分 [生成函数]

    传送门 题意简述:语文不好不会写,自己看吧 思路如此精妙,代码如此简洁,实是锻炼思维水经验之好题 这种题当然是一眼DP啦. 设\(dp_n\)为把\(n\)拆分后的答案.为了方便我们设\(dp_0=1 ...

  4. 洛谷P4451 [国家集训队]整数的lqp拆分(生成函数)

    题面 传送门 题解 我对生成函数一无所知 我们设\(F(x)\)为斐波那契数列的生成函数,\(G(x)\)为答案的生成函数,那么容易得到递推关系 \[g_n=\sum_{i=0}^{n-1}f_ig_ ...

  5. 洛谷 P4451 [国家集训队]整数的lqp拆分

    洛谷 这个题目是黑题,本来想打表的,但是表调不出来(我逊毙了)! 然后随便打了一个递推,凑出了样例, 竟然. 竟然.. 竟然... A了!!!!!!! 直接:\(f[i]=f[i-1]*2+f[i-2 ...

  6. P4451 [国家集训队]整数的lqp拆分

    #include <bits/stdc++.h> using namespace std; typedef long long LL; inline LL read () { LL res ...

  7. [国家集训队]整数的lqp拆分 数学推导 打表找规律

    题解: 考场上靠打表找规律切的题,不过严谨的数学推导才是本题精妙所在:求:$\sum\prod_{i=1}^{m}F_{a{i}}$ 设 $f(i)$ 为 $N=i$ 时的答案,$F_{i}$ 为斐波 ...

  8. P4451-[国家集训队]整数的lqp拆分【生成函数,特征方程】

    正题 题目链接:https://www.luogu.com.cn/problem/P4451 题目大意 给出\(n\),对于所有满足\(\sum_{i=1}^ma_i=n\)且\(\forall a_ ...

  9. [BZOJ2173]整数的lqp拆分

    [题目描述] lqp在为出题而烦恼,他完全没有头绪,好烦啊… 他首先想到了整数拆分.整数拆分是个很有趣的问题.给你一个正整数N,对于N的一个整数拆分就是满足任意m>0,a1 ,a2 ,a3…am ...

随机推荐

  1. shell脚本--CGI获取请求数据(GET / POST)

    Case 1: 获取地址栏传递的参数(即通过GET方式) CGI的环境变量中有个QUERY_STRING,可以获取地址栏传递的参数,该参数可以是手动加上的,也可以是通过表单的get方式提交的,比如下面 ...

  2. .net 报错汇总——持续更新

    1.未能找到 CodeDom 提供程序类型“Microsoft.CodeDom.Providers.DotNetCompilerPla PM> Install-Package Microsoft ...

  3. Python3练习题求1000以内所有3和5的倍数的总和

    sum = 0 for i in range(1,1000):     if i%3 == 0 or i%5 == 0:         sum += i print(sum)

  4. IdentityServer4【Topic】之StartUp中的配置

    Startup 身份服务器是中间件和服务的组合.所有的配置都是在启动类中完成的. Configuring services 通过调用如下代码在DI(dependency inject,依赖注入)中添加 ...

  5. AngularJS双向数据绑定

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  6. Flutter的Appbar

    actions → List一个 Widget 列表,代表 Toolbar 中所显示的菜单,对于常用的菜单,通常使用 IconButton 来表示:对于不常用的菜单通常使用PopupMenuButto ...

  7. 如何使用nodejs快速搭建本地服务器

    1.首先要安装好node,js 2.以下有安装包下载的链接:这里的安装包是.msi,如果要其他的,可以到菜鸟教程上去找 32 位安装包下载地址 : https://nodejs.org/dist/v4 ...

  8. MySQL的备份和回复

    一.备份的原因 二.备份的类型 三.备份的方式 四.备份策略 五.备份工具

  9. windows 安装tensorflow

    原文知乎:https://zhuanlan.zhihu.com/p/25778703 前言 看到Rstudio中开始支持Tensorflow,本人是欣喜若狂的,同时TensorFlow官网从16年9月 ...

  10. CS新建排版

    1.拉菜单栏barmanage,去掉不要的头部和尾部  ,选择控件bar属性optionsbar 全部为false,防止菜单拖动. 2.拉一个panelcontrol属性dock 设置顶部,在拉一个p ...