loj#2049. 「HNOI2016」网络(set 树剖 暴力)
题意
Sol
下面的代码是\(O(nlog^3n)\)的暴力。
因为从一个点向上只会跳\(logn\)次,所以可以暴力的把未经过的处理出来然后每个点开个multiset维护最大值
#include<bits/stdc++.h>
#define Pair pair<int, int>
#define MP(x, y) make_pair(x, y)
#define fi first
#define se second
//#define int long long
#define LL long long
#define Fin(x) {freopen(#x".in","r",stdin);}
#define Fout(x) {freopen(#x".out","w",stdout);}
using namespace std;
const int MAXN = 2e5 + 10, SS = MAXN * 4, mod = 1e9 + 7, INF = 1e9 + 10;
const double eps = 1e-9;
template <typename A, typename B> inline bool chmin(A &a, B b){if(a > b) {a = b; return 1;} return 0;}
template <typename A, typename B> inline bool chmax(A &a, B b){if(a < b) {a = b; return 1;} return 0;}
template <typename A, typename B> inline LL add(A x, B y) {if(x + y < 0) return x + y + mod; return x + y >= mod ? x + y - mod : x + y;}
template <typename A, typename B> inline void add2(A &x, B y) {if(x + y < 0) x = x + y + mod; else x = (x + y >= mod ? x + y - mod : x + y);}
template <typename A, typename B> inline LL mul(A x, B y) {return 1ll * x * y % mod;}
template <typename A, typename B> inline void mul2(A &x, B y) {x = (1ll * x * y % mod + mod) % mod;}
template <typename A> inline void debug(A a){cout << a << '\n';}
template <typename A> inline LL sqr(A x){return 1ll * x * x;}
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, Q, fa[MAXN], siz[MAXN], son[MAXN], id[MAXN], top[MAXN], dep[MAXN], times;
vector<int> v[MAXN];
void dfs1(int x, int _fa) {
siz[x] = 1; dep[x] = dep[_fa] + 1; fa[x] = _fa;
for(auto &to : v[x]) {
if(to == _fa) continue;
dfs1(to, x);
siz[x] += siz[to];
if(siz[to] > siz[son[x]]) son[x] = to;
}
}
void dfs2(int x, int topf) {
top[x] = topf; id[x] = ++times;
if(!son[x]) return ;
dfs2(son[x], topf);
for(auto &to : v[x]) {
if(top[to]) continue;
dfs2(to, to);
}
}
multiset<int> s[SS];
struct Query {
int a, b, v;
}q[MAXN];
vector<Pair> line[MAXN];
int ls[SS], rs[SS], root, tot;
void Erase(multiset<int> &s, int v) {
auto it = s.find(v);
if(it != s.end()) s.erase(it);
}
void Get(vector<Pair> &v, int x, int y) {
vector<Pair> tmp;
while(top[x] ^ top[y]) {
if(dep[top[x]] < dep[top[y]]) swap(x, y);
tmp.push_back({id[top[x]], id[x]});
x = fa[top[x]];
}
if(dep[x] > dep[y]) swap(x, y);
tmp.push_back({id[x], id[y]});
sort(tmp.begin(), tmp.end());
int las = 1;
for(auto x : tmp) {
if(las <= x.fi - 1) v.push_back({las, x.fi - 1});
las = x.se + 1;
}
if(las <= N) v.push_back({las, N});
}
int Mx(multiset<int> &s) {
if(s.empty()) return -1;
auto it = s.end(); it--;
return *it;
}
void IntAdd(int &k, int l, int r, int ql, int qr, int v, int opt) {
if(!k) k = ++tot;
if(ql <= l && r <= qr) {
if(opt == 1) s[k].insert(v);
else Erase(s[k], v);
return ;
}
int mid = l + r >> 1;
if(ql <= mid) IntAdd(ls[k], l, mid, ql, qr, v, opt);
if(qr > mid) IntAdd(rs[k], mid + 1, r, ql, qr, v, opt);
}
int Query(int k, int l, int r, int p) {
if(!k) return -1;
int ans = Mx(s[k]), mid = l + r >> 1;
if(l == r) return Mx(s[k]);
if(p <= mid) chmax(ans, Query(ls[k], l, mid, p));
else chmax(ans, Query(rs[k], mid + 1, r, p));
return ans;
}
void TreeAdd(int x, int y, int v, int opt) {
while(top[x] ^ top[y]) {
if(dep[top[x]] < dep[top[y]]) swap(x, y);
IntAdd(root, 1, N, id[top[x]], id[x], v, opt);
x = fa[top[x]];
}
if(dep[x] > dep[y]) swap(x, y);
IntAdd(root, 1, N, id[x], id[y], v, opt);
}
void Add(int ti, int opt) {
int x = q[ti].a, y = q[ti].b, v = q[ti].v;
if(opt == 1) Get(line[ti], x, y);
for(auto x : line[ti])
IntAdd(root, 1, N, x.fi, x.se, v, opt);
}
signed main() {
// Fin(a); Fout(b);
N = read(); Q = read();
for(int i = 1; i <= N - 1; i++) {
int x = read(), y = read();
v[x].push_back(y);
v[y].push_back(x);
}
dfs1(1, 0);
dfs2(1, 1);
for(int i = 1; i <= Q; i++) {
int opt = read();
if(opt == 0) {
int a = read(), b = read(), v = read(); q[i] = {a, b, v};
Add(i, 1);
} else if(opt == 1) {
int ti = read();
Add(ti, -1);
} else if(opt == 2) {
int x = read();
printf("%d\n", Query(root, 1, N, id[x]));
}
}
return 0;
}
loj#2049. 「HNOI2016」网络(set 树剖 暴力)的更多相关文章
- 「HNOI2016」网络 解题报告
「HNOI2016」网络 我有一个绝妙的可持久化树套树思路,可惜的是,它的空间是\(n\log^2 n\)的... 注意到对一个询问,我们可以二分答案 然后统计经过这个点大于当前答案的路径条数,如果这 ...
- loj#2255. 「SNOI2017」炸弹 线段树优化建图,拓扑,缩点
loj#2255. 「SNOI2017」炸弹 线段树优化建图,拓扑,缩点 链接 loj 思路 用交错关系建出图来,发现可以直接缩点,拓扑统计. 完了吗,不,瓶颈在于边数太多了,线段树优化建图. 细节 ...
- loj #2051. 「HNOI2016」序列
#2051. 「HNOI2016」序列 题目描述 给定长度为 n nn 的序列:a1,a2,⋯,an a_1, a_2, \cdots , a_na1,a2,⋯,an,记为 a[1: ...
- LOJ 2551 「JSOI2018」列队——主席树+二分
题目:https://loj.ac/problem/2551 答案是排序后依次走到 K ~ K+r-l . 想维护一个区间排序后的结果,使得可以在上面二分.求和:二分可以知道贡献是正还是负. 于是想用 ...
- LOJ 2555 「CTSC2018」混合果汁——主席树
题目:https://loj.ac/problem/2555 二分答案,在可以选的果汁中,从价格最小的开始选. 按价格排序,每次可以选的就是一个前缀.对序列建主席树,以价格为角标,维护体积和.体积*价 ...
- LOJ#2052. 「HNOI2016」矿区(平面图转对偶图)
题面 传送门 题解 总算会平面图转对偶图了-- 首先我们把无向边拆成两条单向边,这样的话每条边都属于一个面.然后把以每一个点为起点的边按极角排序,那么对于一条边\((u,v)\),我们在所有以\(v\ ...
- loj2049 「HNOI2016」网络
好像复杂度来说不是正解--不加谜之优化(下叙)能被loj上的加强数据卡 #include <algorithm> #include <iostream> #include &l ...
- loj 2955 「NOIP2018」保卫王国 - 树链剖分 - 动态规划
题目传送门 传送门 想抄一个短一点ddp板子.然后照着Jode抄,莫名其妙多了90行和1.3k. Code /** * loj * Problem#2955 * Accepted * Time: 26 ...
- LOJ #2048. 「HNOI2016」最小公倍数
题意 有 \(n\) 个点,\(m\) 条边,每条边连接 \(u \Leftrightarrow v\) 且权值为 \((a, b)\) . 共有 \(q\) 次询问,每次询问给出 \(u, v, q ...
随机推荐
- ReentrantReadWriteLock 读写锁解析
4 java中锁是个很重要的概念,当然这里的前提是你会涉及并发编程. 除了语言提供的锁关键字 synchronized和volatile之外,jdk还有其他多种实用的锁. 不过这些锁大多都是基于AQS ...
- dubbo实用知识点总结(一)
1. dubbo基础架构 架构 特性 服务提供者 服务消费者 配置可以用dubbo.properties来替换 2. 注解配置 提供方(注意:serivce注解是dubbo的service) 消费者 ...
- 【Spark调优】聚合操作数据倾斜解决方案
[使用场景] 对RDD执行reduceByKey等聚合类shuffle算子或者在Spark SQL中使用group by语句进行分组聚合时,经过sample或日志.界面定位,发生了数据倾斜. [解决方 ...
- Python编程Day5——可变与不可变类型、数据类型整合
一.可变与不可变类型1.可变类原值型:只改变,但id不变,证明就是在改变原值,是可变类型2.不可变类型:值改变,但id也跟着改变,证明是产生了新的值,是不可变类型 x= print(id(x)) x= ...
- 使用C# (.NET Core) 实现迭代器设计模式 (Iterator Pattern)
本文的概念来自深入浅出设计模式一书 项目需求 有两个饭店合并了, 它们各自有自己的菜单. 饭店合并之后要保留这两份菜单. 这两个菜单是这样的: 菜单项MenuItem的代码是这样的: 最初我们是这样设 ...
- Linux(CentOS)下安装Elasticsearch5.0.0
一.ES5.0解压安装到Windows之后(可能)需要进行的设置: 1.如果不设置,直接运行elasticsearch.bat 文件 ,会报错: 2.解决方式 调节 conf/jvm.options ...
- 【Java提高】---通过UUID、SHA-1、Base64组合加密
通过UUID.SHA-1.Base64组合加密 该篇文章实现的最终效果是: 1)加密是不可逆的. 2)相同字符串加密产生后的字符串都不一样 3)所以要想比较两个字符串是否相等,需要用已经加过密的字符串 ...
- Spring IOC分析
前言 关于Spring,我想无需做太多的解释了.每个Java程序猿应该都使用过他.Spring的ioc和aop极大的方便了我们的开发,但是Spring又有着不好的一面,为了符合开闭原则,Spring的 ...
- 通用Web后台魔方NewLife.Cube
魔方 是一个基于 ASP.NET MVC 的 用户权限管理平台,可作为各种信息管理系统的基础框架. 演示:http://cube.newlifex.com 源码 源码: http://git.newl ...
- Spark提高篇——RDD/DataSet/DataFrame(一)
该部分分为两篇,分别介绍RDD与Dataset/DataFrame: 一.RDD 二.DataSet/DataFrame 先来看下官网对RDD.DataSet.DataFrame的解释: 1.RDD ...