题目描述

JYY创建的电信公司,垄断着整个JSOI王国的电信网络。JYY在JSOI王国里建造了很多的通信基站。目前所有的基站
都是使用2G网络系统的。而现在3G时代已经到来了,JYY在思考,要不要把一些基站升级成3G网络的呢?JSOI王国
可以被看作为一个无穷大的二维平面,JYY一共建造了N个通信基站,第i个基站的坐标是(Xi,Yi)。每个基站有一个
通信范围Ri。第i号基站会向所有到其距离不超过Ri的基站发送信息。每个基站升级到3G网络都会有一个收益Si,
这个收益可能是正数(比如基站附近有个大城市,用户很多,赚的流量费也就很多了),也可能是负数(比如基站
周围市场不佳,收益不能填补升级基站本身的投资)。此外,由于原有的使用2G网络系统的基站无法解析从升级成
3G网络系统的基站所发来的信息(但是升级之后的基站是可以解析未升级基站发来的信息的),所以,JYY必须使
得,在升级工作全部完成之后,所有使用3G网络的基站,其通信范围内的基站,也都是使用3G网络的。由于基站数
量很多,你可以帮助JYY计算一下,他通过升级基站,最多能获得的收益是多少吗?

输入

第一行一个整数N;
接下来N行,每行4个整数,Xi,Yi,Ri,Si,表示处在(Xi,Yi)的基站的通信
范围是Ri,升级可以获得的收益是Si。
数据满足任意两个基站的坐标不同。
1≤N≤500,1≤Ri≤20000,|Xi|,|Yi|,|Si|≤10^4。

输出

输出一行一个整数,表示可以获得的最大收益。

样例输入

5
0 1 7 10
0 -1 7 10
5 0 1 -15
10 0 6 10
15 1 2 -20

样例输出

5
【样例说明】
我们可以将前三座基站升级成 3G 网络,以获得最佳收益。
 
根据题意要求,显然就是求最大权闭合子图,将源点连向正收益的点,流量为收益;负收益点连向汇点,流量为收益的相反数。暴力枚举两个点,如果$j$在$i$的范围内,那么就将$i$向$j$连边,流量为$INF$。答案就是正收益之和$-$最小割

#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<vector>
#include<bitset>
#include<cstring>
#include<iostream>
#include<algorithm>
#define INF 1000000000
using namespace std;
int head[600];
int next[600000];
int to[600000];
int val[600000];
int d[600];
int q[600];
int n;
int x[600];
int y[600];
int r[600];
int s[600];
int tot=1;
int ans;
int S,T;
void add(int x,int y,int v)
{
tot++;
next[tot]=head[x];
head[x]=tot;
to[tot]=y;
val[tot]=v;
tot++;
next[tot]=head[y];
head[y]=tot;
to[tot]=x;
val[tot]=0;
}
bool bfs(int S,int T)
{
int r=0;
int l=0;
memset(q,0,sizeof(q));
memset(d,-1,sizeof(d));
q[r++]=S;
d[S]=0;
while(l<r)
{
int now=q[l];
for(int i=head[now];i;i=next[i])
{
if(d[to[i]]==-1&&val[i]!=0)
{
d[to[i]]=d[now]+1;
q[r++]=to[i];
}
}
l++;
}
return d[T]!=-1;
}
int dfs(int x,int flow)
{
if(x==T)
{
return flow;
}
int now_flow;
int used=0;
for(int i=head[x];i;i=next[i])
{
if(d[to[i]]==d[x]+1&&val[i]!=0)
{
now_flow=dfs(to[i],min(flow-used,val[i]));
val[i]-=now_flow;
val[i^1]+=now_flow;
used+=now_flow;
if(now_flow==flow)
{
return flow;
}
}
}
if(used==0)
{
d[x]=-1;
}
return used;
}
void dinic()
{
while(bfs(S,T)==true)
{
ans-=dfs(S,0x3f3f3f);
}
}
bool check(int i,int j)
{
if((y[j]-y[i])*(y[j]-y[i])+(x[j]-x[i])*(x[j]-x[i])<=r[i]*r[i])
{
return true;
}
else
{
return false;
}
}
int main()
{
scanf("%d",&n);
S=n+1;
T=S+1;
for(int i=1;i<=n;i++)
{
scanf("%d%d%d%d",&x[i],&y[i],&r[i],&s[i]);
if(s[i]>0)
{
ans+=s[i];
add(S,i,s[i]);
}
else
{
add(i,T,-s[i]);
}
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
if(check(i,j))
{
add(i,j,INF);
}
}
}
dinic();
printf("%d",ans);
}

BZOJ5037[Jsoi2014]电信网络——最大权闭合子图的更多相关文章

  1. 【BZOJ5037】[Jsoi2014]电信网络 最大权闭合图

    [BZOJ5037][Jsoi2014]电信网络 Description JYY创建的电信公司,垄断着整个JSOI王国的电信网络.JYY在JSOI王国里建造了很多的通信基站.目前所有的基站都是使用2G ...

  2. BZOJ1565 [NOI2009]植物大战僵尸(拓扑排序 + 最大权闭合子图)

    题目 Source http://www.lydsy.com/JudgeOnline/problem.php?id=1565 Description Input Output 仅包含一个整数,表示可以 ...

  3. hiho 第119周 最大权闭合子图

    描述 周末,小Hi和小Ho所在的班级决定举行一些班级建设活动. 根据周内的调查结果,小Hi和小Ho一共列出了N项不同的活动(编号1..N),第i项活动能够产生a[i]的活跃值. 班级一共有M名学生(编 ...

  4. 【POJ 2987】Firing (最小割-最大权闭合子图)

    裁员 [问题描述] 在一个公司里,老板发现,手下的员工很多都不务正业,真正干事员工的没几个,于是老板决定大裁员,每开除一个人,同时要将其下属一并开除,如果该下属还有下属,照斩不误.给出每个人的贡献值和 ...

  5. P4177 [CEOI2008]order(网络流)最大权闭合子图

    P4177 [CEOI2008]order 如果不能租机器,这就是最大权闭合子图的题: 给定每个点的$val$,并给出限制条件:如果取点$x$,那么必须取$y_1,y_2,y_3......$,满足$ ...

  6. BZOJ1565[NOI2009]植物大战僵尸——最大权闭合子图+拓扑排序

    题目描述 Plants vs. Zombies(PVZ)是最近十分风靡的一款小游戏.Plants(植物)和Zombies(僵尸)是游戏的主角,其中Plants防守,而Zombies进攻.该款游戏包含多 ...

  7. BZOJ1497[NOI2006]最大获利——最大权闭合子图

    题目描述 新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战.THU集团旗下的CS&T通讯公司在新一代通讯技术血战的前夜,需要做太多的准备工作,仅就站址选择一项,就需要完成 ...

  8. POJ 2987 - Firing - [最大权闭合子图]

    题目链接:http://poj.org/problem?id=2987 Time Limit: 5000MS Memory Limit: 131072K Description You’ve fina ...

  9. 【BZOJ】1497: [NOI2006]最大获利 最大权闭合子图或最小割

    [题意]给定n个点,点权为pi.m条边,边权为ci.选择一个点集的收益是在[点集中的边权和]-[点集点权和],求最大获利.n<=5000,m<=50000,0<=ci,pi<= ...

随机推荐

  1. 重构JS代码 - 让JS代码平面化

    js中的嵌套函数用的很多,很牛叉,那为何要平面化? 易懂(自己及他人) 易修改(自己及他人) 平时Ajax调用写法(基于jQuery) $.post('url', jsonObj, function ...

  2. PS滤镜制作下雨照片特效

    原图 一.打开你想要添加下雨效果的照片,并新建一个图层,命名为雨,填充为黑色,对“雨”层执行:滤镜 > 杂色> 添加杂色,参数如图. 二.对“雨”层执行:滤镜 > 模糊 > 高 ...

  3. Mysql 中的MVCC原理,undo日志的依赖

    一. MVCC 原理了解   原文点击:MVCC原理浅析 读锁: 也叫共享锁.S锁,若事务T对数据对象A加上S锁,则事务T可以读A但不能修改A,其他事务只能再对A加S锁,而不能加X锁,直到T释放A上的 ...

  4. Django 内的母版-子html规则

    一.母版 在实际应用中,在开发一个网站时,从首页到主页.到目录页,等等!有时候,我们大部分基础网页头.边框.侧边框.基础css.js等复用性很高,如果每一个html都要独立去写的话,就太麻烦了. 而把 ...

  5. MySQL导出数据,并转存到Excel表格中

    从数据库中导出数据的方法,这里就不提了,网上有很多方法,如果闲麻烦,可以看一下这个:mysql导出数据 其实使用最简单的下面这个语句: mysql > select * from demo in ...

  6. Ubuntu18.04安装netstat

    一.简介 Netstat 命令用于显示各种网络相关信息,如网络连接,路由表,接口状态 (Interface Statistics),masquerade 连接,多播成员 (Multicast Memb ...

  7. JEECG DataGridColumn dictionary使用问题

    <t:dgCol title="线索所属人"  field="ownerId"  query="true"  queryMode=&q ...

  8. python文件封装成*.exe文件(单文件和多文件)

    环境:win10 64位  python3.7 单*.py文件打包Python GUI:程序打包为exe 一.安装Pyinstaller,命令pip install Pyinstaller,(大写的P ...

  9. Junit概述

    Junit ->  java unit.也就是说Junit是xunit家族中的一员. unit   <- unit test case,即单元测试用例. Junit  = java uni ...

  10. VSCode 汉化

    https://jingyan.baidu.com/article/7e44095377c9d12fc1e2ef5b.html