LOJ6433 [PKUSC2018] 最大前缀和 【状压DP】
题目分析:
容易想到若集合$S$为前缀时,$S$外的所有元素的排列的前缀是小于$0$的,DP可以做到,令排列前缀个数小于0的是g[S].
令f[S]表示$S$是前缀,转移可以通过在前面插入元素完成。
代码:
#include<bits/stdc++.h>
using namespace std; const int maxn = ; const int mod = ; int n;
int a[maxn];
int f[<<],g[<<],sum[<<],arr[<<]; void read(){
scanf("%d",&n);
for(int i=;i<=n;i++) scanf("%d",&a[i]);
} void dfs(int now){
if(f[now]) return;
for(int i=;i<n;i++){
if((<<i)&now){
if(f[now-(<<i)]) sum[now] = sum[now-(<<i)]+a[i+];
else dfs(now-(<<i)),sum[now] = sum[now-(<<i)]+a[i+];
f[now] = ; break;
}
}
} int dfs2(int now){
if(arr[now]) return f[now];
arr[now] = ;
for(int i=;i<=n;i++){
if((<<i-)&now){
int z = dfs2(now-(<<i-));
if(sum[now-(<<i-)] >= ) f[now] += z,f[now] %= mod;
}
}
return f[now];
} int dfs3(int now){
if(arr[now]) return g[now];
arr[now] = ;
for(int i=;i<=n;i++){
if((<<i-)&now){
int z = dfs3(now-(<<i-));
if(sum[now] < ) g[now] += z,g[now]%=mod;
}
}
return g[now];
} void work(){
f[] = ;for(int i=;i<(<<n);i++) dfs(i);
memset(f,,sizeof(f));
arr[] = ; f[] = ;
dfs2((<<n)-);
memset(arr,,sizeof(arr));
arr[] = ; g[] = ;
dfs3((<<n)-);
int res = ;
for(int i=;i<(<<n);i++){
res += (1ll*sum[i]*((1ll*f[i]*g[(<<n)--i])%mod))%mod;
res %= mod;
}
res += mod; res %= mod;
printf("%d",res);
} int main(){
read();
work();
return ;
}
LOJ6433 [PKUSC2018] 最大前缀和 【状压DP】的更多相关文章
- [PKUSC2018]最大前缀和——状压DP
题目链接: [PKUSC2018]最大前缀和 设$f[S]$表示二进制状态为$S$的序列,任意前缀和都小于等于$0$的方案数. 设$g[S]$表示二进制状态为$S$的序列是整个序列的最大前缀和的方案数 ...
- 【PKUSC2018】【loj6433】最大前缀和 状压dp
这题吼啊... 然而还是想了$2h$,写了$1h$. 我们发现一个性质:若一个序列$p$能作为前缀和,那么在序列$p$中,包含序列$p$最后一个数的所有子序列必然都是非负的. 那么,我们 令$f[i] ...
- BZOJ5369:[PKUSC2018]最大前缀和(状压DP)
Description 小C是一个算法竞赛爱好者,有一天小C遇到了一个非常难的问题:求一个序列的最大子段和. 但是小C并不会做这个题,于是小C决定把序列随机打乱,然后取序列的最大前缀和作为答案. 小C ...
- LOJ#6433. 「PKUSC2018」最大前缀和 状压dp
原文链接https://www.cnblogs.com/zhouzhendong/p/LOJ6433.html 题解 枚举一个集合 S ,表示最大前缀和中包含的元素集为 S ,然后求出有多少个排列是这 ...
- LOJ 6433 「PKUSC2018」最大前缀和——状压DP
题目:https://loj.ac/problem/6433 想到一个方案中没有被选的后缀满足 “该后缀的任一前缀和 <=0 ”. 于是令 dp[ S ] 表示选了点集 S ,满足任一前缀和 & ...
- BZOJ_5369_[Pkusc2018]最大前缀和_状压DP
BZOJ_5369_[Pkusc2018]最大前缀和_状压DP Description 小C是一个算法竞赛爱好者,有一天小C遇到了一个非常难的问题:求一个序列的最大子段和. 但是小C并不会做这个题,于 ...
- 「PKUSC2018」最大前缀和(状压dp)
前言 考试被\(hyj\)吊着打... Solution 考虑一下如果前缀和如果在某一个位置的后面的任意一个前缀和都<=0,肯定这就是最大的. 然后这样子就考虑左右两边的状压dp,然后就好了. ...
- Loj 6433. 「PKUSC2018」最大前缀和 (状压dp)
题面 Loj 题解 感觉挺难的啊- 状压\(dp\) 首先,有一个性质 对于一个序列的最大前缀和\(\sum_{i=1}^{p} A[i]\) 显然对于每个\(\sum_{i=p+1}^{x}A[i] ...
- 【洛谷5369】[PKUSC2018] 最大前缀和(状压DP)
点此看题面 大致题意: 对于一个序列,求全排列下最大前缀和之和. 状压\(DP\) 考虑如果单纯按照题目中对于最大前缀和的定义,则一个序列它的最大前缀和是不唯一的. 为了方便统计,我们姑且规定,如果一 ...
- T2988 删除数字【状压Dp+前缀和优化】
Online Judge:从Topcoder搬过来,具体哪一题不清楚 Label:状压Dp+前缀和优化 题目描述 给定两个数A和N,形成一个长度为N+1的序列,(A,A+1,A+2,...,A+N-1 ...
随机推荐
- CSS Grid 读书笔记
基本概念 MDN上的解释是这样的 CSS Grid Layout excels at dividing a page into major regions or defining the relati ...
- vue组件化开发组件拆分原则是什么
原则:可复用.可组合: 两大类:页面组件.功能组件: 除了公共头导航.侧导航.脚部内容,还有:
- C. Prefixes and Suffixes
链接 [https://codeforces.com/contest/1092/problem/C] 题意 给你某个字符串的长度n,再给你2*n-2个前缀或者后缀 让你判断那些是前缀那些是后缀 关键是 ...
- socket流程
- python的UnboundLocalError: local variable 'xxx' referenced b
一.意思: 本地变量xxx引用前没定义. 二.错误原因 在于python没有变量的声明 , 所以它通过一个简单的规则找出变量的范围 :如果有一个函数内部的变量赋值 ,该变量被认为是本地的,所以 ...
- CRM系统(第四部分)
阅读目录 1.引入权限组件rbac 2.分配权限 3.登录.引入中间件 1.引入权限组件rbac 1.settings配置app.中间件 INSTALLED_APPS = [ ... ... ...
- CentOS6.5配置 cron
CentOS6.5配置 cron 任务 - mengjiaoduan的博客 - CSDN博客https://blog.csdn.net/mengjiaoduan/article/details/649 ...
- 前端开发之jQuery库
使用jquery开发的时候,如果我们不想使用自己的jquery文件,那么可以引用现成的地址.方便日常开发使用 jquery-2.0以上版本 (注!不再支持IE 6/7/8) jquery-2.0.0百 ...
- Java 找不到或者无法加载主类
1 测试Test 类的时候突然遇到一个很奇怪的问题,网上搜了很多资料才找到解决办法,大多数情况是因为类加了包名编译,执行的时候没有到包下去执行.与我遇到的情况不一样. 问题:写了一个测试类Test,在 ...
- Spark源码编译,官网学习
这里以spark-1.6.0版本为例 官网网址 http://spark.apache.org/docs/1.6.0/building-spark.html#building-with-build ...