【BZOJ1013】【JSOI2008】球形空间产生器 高斯消元
题目描述
有一个\(n\)维空间中的球,告诉你球面上\(n+1\)个点的坐标,求球心的坐标。
\(n\leq 10\)
题解
设\(a_{i,j}\)为第\(i\)个点的第\(j\)维坐标,\(i=0\)代表球心。
假设\(n=2\):
\sum_{i=1}^n{(a_{0,i}-a_{1,i})}^2&=\sum_{i=1}^n{(a_{0,i}-a_{2,i})}^2\\
\sum_{i=1}^na_{0,j}^2-2\sum_{i=1}^na_{0,i}a_{1,i}+\sum_{i=1}^na_{1,i}^2&=\sum_{i=1}^na_{0,j}^2-2\sum_{i=1}^na_{0,i}a_{2,i}+\sum_{i=1}^na_{2,i}^2\\
2\sum_{i=1}^na_{0,i}a_{1,i}-\sum_{i=1}^na_{1,i}^2&=2\sum_{i=1}^na_{0,i}a_{2,i}-\sum_{i=1}^na_{2,i}^2\\
\sum_{i=1}^n2(a_{1,i}-a_{2,i})a_{0,i}-\sum_{i=1}^n(a_{2,i}^2-a_{1,i}^2)&=0
\end{align}
\]
一共给你了\(n+1\)个点,可以构造出\(n\)个方程,可以用高斯消元解出\(n\)个未知数\(a_{0,i},\ldots ,a_{0,n}\)
时间复杂度:\(O(n^3)\)
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
#include<cmath>
#include<functional>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
void sort(int &a,int &b)
{
if(a>b)
swap(a,b);
}
void open(const char *s)
{
#ifndef ONLINE_JUDGE
char str[100];
sprintf(str,"%s.in",s);
freopen(str,"r",stdin);
sprintf(str,"%s.out",s);
freopen(str,"w",stdout);
#endif
}
int rd()
{
int s=0,c;
while((c=getchar())<'0'||c>'9');
do
{
s=s*10+c-'0';
}
while((c=getchar())>='0'&&c<='9');
return s;
}
int upmin(int &a,int b)
{
if(b<a)
{
a=b;
return 1;
}
return 0;
}
int upmax(int &a,int b)
{
if(b>a)
{
a=b;
return 1;
}
return 0;
}
double a[20][20];
double c[20][20];
int main()
{
open("bzoj1013");
int n;
scanf("%d",&n);
int i,j;
for(i=1;i<=n+1;i++)
for(j=1;j<=n;j++)
scanf("%lf",&a[i][j]);
for(i=1;i<=n;i++)
for(j=1;j<=n+1;j++)
c[i][j]=0;
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
{
c[i][j]+=2*(a[1][j]-a[i+1][j]);
c[i][n+1]-=a[i+1][j]*a[i+1][j]-a[1][j]*a[1][j];
}
int k;
double v;
for(i=1;i<=n;i++)
{
for(j=i;j<=n;j++)
if(fabs(c[j][i])>1e-9)
break;
if(j!=i)
for(k=i;k<=n+1;k++)
swap(c[i][k],c[j][k]);
v=1/c[i][i];
for(j=i;j<=n+1;j++)
c[i][j]*=v;
for(j=1;j<=n;j++)
if(j!=i&&fabs(c[j][i])>1e-9)
{
v=c[j][i];
for(k=i;k<=n+1;k++)
c[j][k]-=c[i][k]*v;
}
}
for(i=1;i<=n;i++)
{
printf("%.3f",c[i][n+1]);
if(i!=n)
putchar(' ');
}
return 0;
}
【BZOJ1013】【JSOI2008】球形空间产生器 高斯消元的更多相关文章
- BZOJ.1013.[JSOI2008]球形空间产生器(高斯消元)
题目链接 HDU3571 //824kb 40ms //HDU3571弱化版 跟那个一比这个太水了,练模板吧. //列出$n+1$个二次方程后两两相减,就都是一次方程了. #include <c ...
- LG4035/BZOJ1013 「JSOI2008」球形空间产生器 高斯消元
问题描述 LG4035 BZOJ1013 题解 设答案为\((p_1,p_2,p_3,...,p_n)\) 因为是一个球体,令其半径为\(r\),则有 \[\sum_{i=1}^{n}{(a_i-p_ ...
- BZOJ1013 JSOI2008 球形空间产生器sphere 【高斯消元】
BZOJ1013 JSOI2008 球形空间产生器sphere Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球面上n+1个点 ...
- BZOJ1013 [JSOI2008]球形空间产生器sphere(高斯消元)
1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 4846 Solved: 2525[Subm ...
- [bzoj1013][JSOI2008][球形空间产生器sphere] (高斯消元)
Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧 ...
- bzoj千题计划104:bzoj1013: [JSOI2008]球形空间产生器sphere
http://www.lydsy.com/JudgeOnline/problem.php?id=1013 设球心(x1,x2,x3……) 已知点的坐标为t[i][j] 那么 对于每个i满足 Σ (t[ ...
- bzoj1013 [JSOI2008]球形空间产生器
Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁 ...
- BZOJ1013: [JSOI2008]球形空间产生器sphere
传送门 高斯消元练习. 模板: void Guass(){ int waited; up(i,1,N){ waited=i; up(j,i+1,N)if(fabs(M[j][i])>fabs(M ...
- BZOJ1013 [JSOI2008]球形空间产生器sphere[高消]
数论进度开的好慢啊.我整天做的都是什么鬼题啊. 简单的高消题,用一个式子把另外$n$个有二次项和距离的式子全消掉就行了. #include<iostream> #include<cs ...
随机推荐
- 十五、bootstrap-select的使用方法
参考来源https://www.cnblogs.com/nianyifenzhizuo/p/8119462.html 需要的css和js <link rel="stylesheet&q ...
- MySQL 优化集锦
case 1: 如果筛选or条件有多个的时候,应该将最好判断的放在最前面,将最不好判断的放在最后面 比如,有一个学生表,想要找出其中年龄是20岁,住址中包含666这个数字的记录.可以下面这两个方案: ...
- PHP的内存回收(GC)
php官方对gc的介绍:http://php.net/manual/zh/features.gc.php
- Ubuntu端口开放
一.关于iptable的介绍 维基百科:https://zh.wikipedia.org/wiki/Iptables 注意:iptables的操作需要root权限 二.具体操作 sudo apt-ge ...
- MySQL 性能调优之索引
原文:http://bbs.landingbj.com/t-0-245452-1.html 对于索引的优化,我们第一需要找到合适的字段,第二创建索引找到合适的顺序,第三要找到合适的比例,第四是要做合适 ...
- C#复习笔记(5)--C#5:简化的异步编程(异步编程的基础知识)
异步编程的基础知识 C#5推出的async和await关键字使异步编程从表面上来说变得简单了许多,我们只需要了解不多的知识就可以编写出有效的异步代码. 在介绍async和await之前,先介绍一些基础 ...
- Day 6-3 粘包现象
服务端: import socket import subprocess phone = socket.socket(family=socket.AF_INET, type=socket.SOCK_S ...
- Linux 的相关操作
切换权限 在linux环境下,用户之前的切换使用 “su - name,若要切换到root下面,则使用sudo su 命令即可. 在linux下安装软件,经常就是装完后不知道装到哪里去了 (201 ...
- CART算法与剪枝原理
参考:https://blog.csdn.net/u014688145/article/details/53326910 知乎:https://www.zhihu.com/question/22697 ...
- python之路-字符串
一.类型转换 a = 10 print(type(a)) # <class 'int'> d = str(a) # 把数字转换成str print(type(d)) # <class ...