这一篇我们将开始使用scikit-learn的API来实现模型并进行训练,这个包大大方便了我们的学习过程,其中包含了对常用算法的实现,并进行高度优化,以及含有数据预处理、调参和模型评估的很多方法。

我们来看一个之前看过的实例,不过这次我们使用sklearn来训练一个感知器模型,数据集还是Iris,使用其中两维度的特征,样本数据使用三个类别的全部150个样本

%matplotlib inline
import numpy as np
from sklearn import datasets
iris = datasets.load_iris()
X = iris.data[:, [2, 3]]
y = iris.target
np.unique(y)
array([0, 1, 2])

为了评估训练好的模型对新数据的预测能力,我们这里将Iris数据集分为训练集和测试集,这里我们通过调用trian_test_split方法来将数据集分为两部分,其中测试集占30%,训练集占70%

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)

我们再将特征进行缩放操作,这里调用StandardScaler来对特征进行标准化:

from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
sc.fit(X_train)
X_train_std = sc.transform(X_train)
X_test_std = sc.transform(X_test)

新对象sc使用fit方法对数据集中每一维的特征计算出样本平均值和标准差,然后调用transform方法对数据集进行标准化,我们这里使用相同的标准化参数对待训练集和测试集。接下来我们训练一个感知器模型

from sklearn.linear_model import Perceptron
ppn = Perceptron(max_iter=40, eta0=0.1, random_state=0)
ppn.fit(X_train_std, y_train)
Perceptron(alpha=0.0001, class_weight=None, early_stopping=False, eta0=0.1,
           fit_intercept=True, max_iter=40, n_iter_no_change=5, n_jobs=None,
           penalty=None, random_state=0, shuffle=True, tol=0.001,
           validation_fraction=0.1, verbose=0, warm_start=False)
y_pred = ppn.predict(X_test_std)
print('Misclassified samples: %d' % (y_test != y_pred).sum())
Misclassified samples: 5

可以看出测试集中有5个样本被分错类了,因此错误分类率是0.11,则分类准确率为1-0.11=0.89,我们也可以直接计算分类准确率:

from sklearn.metrics import accuracy_score
print('Accuracy: %.2f' % accuracy_score(y_test, y_pred))
Accuracy: 0.89

最后我们画出分界区域,这里我们将plot_decision_regions函数进行一些修改,使我们可以区分训练集和测试集的样本

from matplotlib.colors import ListedColormap
import matplotlib.pyplot as plt
def plot_decision_regions(X, y, classifier, test_idx=None, resolution=0.02):
    # setup marker generator and color map
    markers = ('s', 'x', 'o', '^', 'v')
    colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')
    cmap = ListedColormap(colors[:len(np.unique(y))])

    # plot the decision surface
    x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1
    x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1
    xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution),
                          np.arange(x2_min, x2_max, resolution))
    Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)
    Z = Z.reshape(xx1.shape)
    plt.contourf(xx1, xx2, Z, slpha=0.4, cmap=cmap)
    plt.xlim(xx1.min(), xx1.max())
    plt.ylim(xx2.min(), xx2.max())

    # plot all samples
    X_test, y_test = X[test_idx, :], y[test_idx]
    for idx, cl in enumerate(np.unique(y)):
        plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1], alpha=0.8,
                   c=cmap(idx), marker=markers[idx], label=cl)

    # highlight test samples
    if test_idx:
        X_test, y_test = X[test_idx, :], y[test_idx]
        plt.scatter(X_test[:, 0], X_test[:, 1], c='',alpha=1.0,
                   linewidth=1, marker='o', s=55, label='test set')
X_combined_std = np.vstack((X_train_std, X_test_std))
y_combined = np.hstack((y_train, y_test))
plot_decision_regions(X=X_combined_std, y=y_combined, classifier=ppn,
                     test_idx=range(105, 150))
plt.xlabel('petal length [standardized]')
plt.ylabel('petal width [standardized]')
plt.legend(loc='upper left')
plt.show()

可以看出三个类别并没有被完美分类,这是由于这三类花并不是线性可分的数据。

python机器学习——使用scikit-learn训练感知机模型的更多相关文章

  1. 吴裕雄 python 机器学习——人工神经网络与原始感知机模型

    import numpy as np from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D from ...

  2. (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探

    一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...

  3. 机器学习框架Scikit Learn的学习

    一   安装 安装pip 代码如下:# wget "https://pypi.python.org/packages/source/p/pip/pip-1.5.4.tar.gz#md5=83 ...

  4. 使用SKlearn(Sci-Kit Learn)进行SVR模型学习

    今天了解到sklearn这个库,简直太酷炫,一行代码完成机器学习. 贴一个自动生成数据,SVR进行数据拟合的代码,附带网格搜索(GridSearch, 帮助你选择合适的参数)以及模型保存.读取以及结果 ...

  5. 吴裕雄 python 机器学习——集成学习AdaBoost算法回归模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  6. 吴裕雄 python 机器学习——集成学习AdaBoost算法分类模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  7. 吴裕雄 python 机器学习——支持向量机SVM非线性分类SVC模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm fr ...

  8. 吴裕雄 python 机器学习——等度量映射Isomap降维模型

    # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from sklearn import datas ...

  9. 吴裕雄 python 机器学习——多维缩放降维MDS模型

    # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from sklearn import datas ...

随机推荐

  1. tp5中使用中间控制器代理路由,以避免创建过多的无用控制器方法

    在写项目的时候偶尔会加载一些不需要传递参数的静态视图,例如 class Index extends Common { public function index() { return $this-&g ...

  2. PowerUp攻击渗透实战

    记录下PowerUp在实战渗透中的利用 准备环境: kali linux 攻击机 已获得靶机meterpreter(非管理)权限 win7 靶机  拥有powershell环境 1)Invoke-Al ...

  3. [NOIp2011] luogu P1313 计算系数

    继续水博客,待会回去上术学. 题目描述 给定一个多项式 (by+ax)k(by+ax)^k(by+ax)k ,请求出多项式展开后 xn×ymx^n \times y^mxn×ym 项的系数. Solu ...

  4. Libevent::evhttp服务器

    #include <cstdio> #include <stdio.h> #include <stdlib.h> #include <string.h> ...

  5. Pycharm中Python Console与Terminal的区别

    1.Python Console是Python交互式模式,可以直接输入代码,然后执行,并立刻得到结果 2.Terminal是命令行模式,与系统的CMD(命令提示符)一样,可以运行各种系统命令

  6. 使用C++代码打印数字正方形

    使用C++代码打印数字正方形 作为一名初学者,最近在跟着网课学习C++程序设计基础.在学习过程中遇到了一些习题,我根据自己的理解和思路写了一些代码实现,算是对自己学习过程的一个记录,也希望可以对别人有 ...

  7. [线段树系列] LCT打延迟标记的正确姿势

    这一篇博客将教你什么? 如何用LCT打延迟标记,LCT和线段树延迟标记间的关系,为什么延迟标记要这样打. ——正片开始—— 学习这一篇博客前,确保你会以下知识: Link-Cut-Tree,普通线段树 ...

  8. Java基础(39)Arrays.binarySearch方法

    1.源码中可以看到,binarySearch方法调用了binarySearch0方法,binarySearch0方法才是标准的二分查找实现. 2.对于binarySearch0方法来说,注意最后的re ...

  9. 被低估的.NET(下)-2019 中国.NET 开发者峰会

    Time flies!不知不觉距离上篇<被低估的.net(上) - 微软MonkeyFest 2018广州分享会活动回顾>和中篇<被低估的.net(中) - 广州.net俱乐部201 ...

  10. WARNING: The host 'WeiLei' could not be looked up with resolveip.

    [root@WeiLei data]# /usr/local/mysql/scripts/mysql_install_db --user=mysql --basedir=/usr/local/mysq ...