python机器学习——使用scikit-learn训练感知机模型
这一篇我们将开始使用scikit-learn的API来实现模型并进行训练,这个包大大方便了我们的学习过程,其中包含了对常用算法的实现,并进行高度优化,以及含有数据预处理、调参和模型评估的很多方法。
我们来看一个之前看过的实例,不过这次我们使用sklearn来训练一个感知器模型,数据集还是Iris,使用其中两维度的特征,样本数据使用三个类别的全部150个样本
%matplotlib inline
import numpy as np
from sklearn import datasets
iris = datasets.load_iris()
X = iris.data[:, [2, 3]]
y = iris.target
np.unique(y)
array([0, 1, 2])
为了评估训练好的模型对新数据的预测能力,我们这里将Iris数据集分为训练集和测试集,这里我们通过调用trian_test_split方法来将数据集分为两部分,其中测试集占30%,训练集占70%
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
我们再将特征进行缩放操作,这里调用StandardScaler来对特征进行标准化:
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
sc.fit(X_train)
X_train_std = sc.transform(X_train)
X_test_std = sc.transform(X_test)
新对象sc使用fit方法对数据集中每一维的特征计算出样本平均值和标准差,然后调用transform方法对数据集进行标准化,我们这里使用相同的标准化参数对待训练集和测试集。接下来我们训练一个感知器模型
from sklearn.linear_model import Perceptron
ppn = Perceptron(max_iter=40, eta0=0.1, random_state=0)
ppn.fit(X_train_std, y_train)
Perceptron(alpha=0.0001, class_weight=None, early_stopping=False, eta0=0.1,
fit_intercept=True, max_iter=40, n_iter_no_change=5, n_jobs=None,
penalty=None, random_state=0, shuffle=True, tol=0.001,
validation_fraction=0.1, verbose=0, warm_start=False)
y_pred = ppn.predict(X_test_std)
print('Misclassified samples: %d' % (y_test != y_pred).sum())
Misclassified samples: 5
可以看出测试集中有5个样本被分错类了,因此错误分类率是0.11,则分类准确率为1-0.11=0.89,我们也可以直接计算分类准确率:
from sklearn.metrics import accuracy_score
print('Accuracy: %.2f' % accuracy_score(y_test, y_pred))
Accuracy: 0.89
最后我们画出分界区域,这里我们将plot_decision_regions函数进行一些修改,使我们可以区分训练集和测试集的样本
from matplotlib.colors import ListedColormap
import matplotlib.pyplot as plt
def plot_decision_regions(X, y, classifier, test_idx=None, resolution=0.02):
# setup marker generator and color map
markers = ('s', 'x', 'o', '^', 'v')
colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')
cmap = ListedColormap(colors[:len(np.unique(y))])
# plot the decision surface
x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1
x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution),
np.arange(x2_min, x2_max, resolution))
Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)
Z = Z.reshape(xx1.shape)
plt.contourf(xx1, xx2, Z, slpha=0.4, cmap=cmap)
plt.xlim(xx1.min(), xx1.max())
plt.ylim(xx2.min(), xx2.max())
# plot all samples
X_test, y_test = X[test_idx, :], y[test_idx]
for idx, cl in enumerate(np.unique(y)):
plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1], alpha=0.8,
c=cmap(idx), marker=markers[idx], label=cl)
# highlight test samples
if test_idx:
X_test, y_test = X[test_idx, :], y[test_idx]
plt.scatter(X_test[:, 0], X_test[:, 1], c='',alpha=1.0,
linewidth=1, marker='o', s=55, label='test set')
X_combined_std = np.vstack((X_train_std, X_test_std))
y_combined = np.hstack((y_train, y_test))
plot_decision_regions(X=X_combined_std, y=y_combined, classifier=ppn,
test_idx=range(105, 150))
plt.xlabel('petal length [standardized]')
plt.ylabel('petal width [standardized]')
plt.legend(loc='upper left')
plt.show()

可以看出三个类别并没有被完美分类,这是由于这三类花并不是线性可分的数据。
python机器学习——使用scikit-learn训练感知机模型的更多相关文章
- 吴裕雄 python 机器学习——人工神经网络与原始感知机模型
import numpy as np from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D from ...
- (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探
一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...
- 机器学习框架Scikit Learn的学习
一 安装 安装pip 代码如下:# wget "https://pypi.python.org/packages/source/p/pip/pip-1.5.4.tar.gz#md5=83 ...
- 使用SKlearn(Sci-Kit Learn)进行SVR模型学习
今天了解到sklearn这个库,简直太酷炫,一行代码完成机器学习. 贴一个自动生成数据,SVR进行数据拟合的代码,附带网格搜索(GridSearch, 帮助你选择合适的参数)以及模型保存.读取以及结果 ...
- 吴裕雄 python 机器学习——集成学习AdaBoost算法回归模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
- 吴裕雄 python 机器学习——集成学习AdaBoost算法分类模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
- 吴裕雄 python 机器学习——支持向量机SVM非线性分类SVC模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm fr ...
- 吴裕雄 python 机器学习——等度量映射Isomap降维模型
# -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from sklearn import datas ...
- 吴裕雄 python 机器学习——多维缩放降维MDS模型
# -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from sklearn import datas ...
随机推荐
- JS基本数据类型和引用数据类型的区别及深浅拷贝
前言 首先我们先来了解一下什么叫栈堆,基本数据类型与引用数据类型 1.栈(stack)和堆(heap)stack为自动分配的内存空间,它由系统自动释放:而heap则是动态分配的内存,大小也不一定会自动 ...
- Java工程师学习指南(完结篇)
Java工程师学习指南 完结篇 先声明一点,文章里面不会详细到每一步怎么操作,只会提供大致的思路和方向,给大家以启发,如果真的要一步一步指导操作的话,那至少需要一本书的厚度啦. 因为笔者还只是一名在校 ...
- 局部敏感哈希LSH(Locality-Sensitive Hashing)——海量数据相似性查找技术
一. 前言 最近在工作中需要对海量数据进行相似性查找,即对微博全量用户进行关注相似度计算,计算得到每个用户关注相似度最高的TOP-N个用户,首先想到的是利用简单的协同过滤,先定义相似性度量(c ...
- 章节十七章、2- 给执行失败的case截图
一.案例演示 1.首先我们把截图的方法单独进行封装方便以后调用. package utilities; import java.io.File; import java.io.IOException; ...
- .Net Core中的ObjectPool
一.对象池 运用对象池化技术可以显著地提升性能,尤其是当对象的初始化过程代价较大或者频率较高.下面是ObjectPool源码中涉及的几个类.当你看过.Net Core源码很多时,你会发现,微软的开发很 ...
- 【Python3爬虫】我爬取了七万条弹幕,看看RNG和SKT打得怎么样
一.写在前面 直播行业已经火热几年了,几个大平台也有了各自独特的“弹幕文化”,不过现在很多平台直播比赛时的弹幕都基本没法看的,主要是因为网络上的喷子还是挺多的,尤其是在观看比赛的时候,很多弹幕不是喷选 ...
- java接口的演变(jdk8的default、静态方法,jdk9的私有方法、私有静态方法)
目录: 接口的定义 jdk7-9,接口属性的变化 jdk8,default.public static method的提出解决了什么问题,使用时需要注意什么 jdk9的补充(引入private met ...
- 移动端网页常用meta
今天在对前公司的某直播室前端进行改版时,整理了一下平时移动端页面开发时,最常用的meta.如下: <!--定义页面制作者,可以留姓名,也可以留联系方式--> <meta name=& ...
- C# 添加、读取、删除Excel文档属性
在文档属性中,可以设置诸多关于文档的信息,如创建时间.作者.单位.类别.关键词.备注等摘要信息以及一些自定义的文档属性.下面将通过C#程序来演示如何设置,同时对文档内的已有信息,也可以实现读取或删除等 ...
- drf框架中所有视图及用法
0909自我总结 drf框架中所有视图及用法 一.drf框架中的所有视图类 from django.views import View from rest_framework import views ...