打家劫舍

你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。

给定一个代表每个房屋存放金额的非负整数数组,计算你在不触动警报装置的情况下,能够偷窃到的最高金额。

示例 1:

输入: [1,2,3,1]

输出: 4

解释: 偷窃 1 号房屋 (金额 = 1) ,然后偷窃 3 号房屋 (金额 = 3)。

偷窃到的最高金额 = 1 + 3 = 4 。

示例 2:

输入: [2,7,9,3,1]

输出: 12

解释: 偷窃 1 号房屋 (金额 = 2), 偷窃 3 号房屋 (金额 = 9),接着偷窃 5 号房屋 (金额 = 1)。

偷窃到的最高金额 = 2 + 9 + 1 = 12 。


动态规划

分析

假设dp[ i ]为前 i 间房屋所能得到的最大利益,那么dp[ i ]为以下两种情况的最大值:1.第 i 间房屋不偷,则当前最大利益为前 i - 1 间房的最大利益,即dp[ i ] = dp[ i - 1 ];2.第 i 间房屋偷,则当前最大利益为前 i - 2 间房的最大利益加上第 i 间房的利益,即dp[ i ] = d[ i - 2 ] + nums[ i ];(相邻两间房屋不能偷)

状态转移方程:dp[ i ] = max{ dp[ i - 1 ],dp[ i - 2 ] + nums[ i ] }

class Solution {
public int rob(int[] nums) { if(nums.length == 0)
return 0;
if(nums.length == 1)
return nums[0]; int[] dp = new int[nums.length];
dp[0] = nums[0];
dp[1] = Math.max(nums[0], nums[1]);
for(int i = 2; i < nums.length; i++){
dp[i] = Math.max(dp[i - 1], dp[i - 2] + nums[i]);
} return dp[nums.length - 1];
}
}

模拟

分析

如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警(即相邻的数字不能同时作为最终求和的有效数字)。那么我们很容易联想到求出奇数和以及偶数和,比较这两个谁更大,谁就是最优解。事实上还有一种情况可能出现最优解,即部分是奇数和,部分是偶数和,例如[3,1,1,5,1,7,1]这样的房屋排列,无论小偷偷奇数位置的房屋还是偶数位置的房屋都不能偷得最多的钱。所以我们在求和时还要将奇数和或偶数和更新为当前最大和,以至于当前和总是处于最优的状态。最后返回两个和中的最大值。

class Solution {
public int rob(int[] nums) { int sumEven = 0;
int sumOdd = 0; for(int i = 0; i < nums.length; i++){ if(i % 2 == 0){ sumEven += nums[i];
sumEven = Math.max(sumEven, sumOdd);
}else{ sumOdd += nums[i];
sumOdd = Math.max(sumEven, sumOdd);
}
} return Math.max(sumEven, sumOdd);
}
}

【LeetCode】198. 打家劫舍的更多相关文章

  1. [LeetCode] 198. 打家劫舍II ☆☆☆(动态规划)

    描述 你是一个专业的小偷,计划偷窃沿街的房屋,每间房内都藏有一定的现金.这个地方所有的房屋都围成一圈,这意味着第一个房屋和最后一个房屋是紧挨着的.同时,相邻的房屋装有相互连通的防盗系统,如果两间相邻的 ...

  2. LeetCode 198. 打家劫舍(House Robber) 5

    198. 打家劫舍 198. House Robber 题目描述 你是一个专业的小偷,计划偷窃沿街的房屋.每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两 ...

  3. [LeetCode] 198. 打家劫舍 ☆(动态规划)

    描述 你是一个专业的小偷,计划偷窃沿街的房屋.每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警. 给定一个 ...

  4. Java实现 LeetCode 198 打家劫舍

    198. 打家劫舍 你是一个专业的小偷,计划偷窃沿街的房屋.每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报 ...

  5. leetcode 198打家劫舍

    讲解视频见刘宇波leetcode动态规划第三个视频 记忆化搜索代码: #include <bits/stdc++.h> using namespace std; class Solutio ...

  6. leetcode 198 打家劫舍 Python 动态规划

    打家劫舍 你是一个专业的小偷,计划偷窃沿街的房屋.每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警. 给定 ...

  7. LeetCode 198. 打家劫舍(House Robber)LeetCode 213. 打家劫舍 II(House Robber II)

    打家劫舍 题目描述 你是一个专业的小偷,计划偷窃沿街的房屋.每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报 ...

  8. 力扣Leetcode 198. 打家劫舍

    打家劫舍 你是一个专业的小偷,计划偷窃沿街的房屋.每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警. 给定 ...

  9. [LeetCode]198. 打家劫舍(DP)

    题目 你是一个专业的小偷,计划偷窃沿街的房屋.每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警. 给定一个 ...

  10. Leetcode——198. 打家劫舍

    题目描述:题目链接 这道题目也是一道动态规划的题目: 分析一道动态规划的题目可以将解决问题的思路分为下面三个部分: 1:问题的描述.可以定义数组d[ i ] 用于表示第i -1家可以获得的最大金额. ...

随机推荐

  1. URL.createObjectURL()的使用方法

    URL.createObjectURL() 静态方法会创建一个 DOMString,其中包含一个表示参数中给出的对象的URL.这个 URL 的生命周期和创建它的窗口中的 document 绑定.这个新 ...

  2. 【Android】Android多渠道打包--Gradle打包

    Android多渠道打包--Gradle打包 前言 由于App一般都会在多个应用市场上架,为了分析App在每个不同渠道的具体的数据,一般都会对不同渠道打包不同的App.多渠道打包有多种方式,这里只介绍 ...

  3. GCN 实现3 :代码解析

    1.代码结构 ├── data // 图数据 ├── inits // 初始化的一些公用函数 ├── layers // GCN层的定义 ├── metrics // 评测指标的计算 ├── mode ...

  4. Scrapy的Spider类和CrawlSpider类

    Scrapy shell 用来调试Scrapy 项目代码的 命令行工具,启动的时候预定义了Scrapy的一些对象 设置 shell Scrapy 的shell是基于运行环境中的python 解释器sh ...

  5. acwing 517. 信息传递

    地址 https://www.acwing.com/problem/content/description/519/ 有 n 个同学(编号为 1 到 n)正在玩一个信息传递的游戏. 在游戏里每人都有一 ...

  6. Java成员变量和局部变量区别

    成员变量和局部变量区别 变量根据定义位置的不同,我们给变量起了不同的名字.如下图所示: 区别 在类中的位置不同  (重点) 成员变量:类中,方法外 局部变量:方法中或者方法声明上(形式参数) 作用范围 ...

  7. Yet Another Broken Keyboard

    time limit per test2 secondsmemory limit per test256 megabytesinput: standard inputoutput: standard ...

  8. Batchnorm原理详解

    Batchnorm原理详解 前言:Batchnorm是深度网络中经常用到的加速神经网络训练,加速收敛速度及稳定性的算法,可以说是目前深度网络必不可少的一部分. 本文旨在用通俗易懂的语言,对深度学习的常 ...

  9. CMake使用总结(一)

    当我们在写CMakeLists.txt文件时,常常会搞不明白link_directories, LINK_LIBRARIES, target_link_libraries这3者的区别,下面就其详细介绍 ...

  10. 从游击队到正规军(二):马蜂窝旅游网的IM客户端架构演进和实践总结

    一.引言 移动互联网技术改变了旅游的世界,这个领域过去沉重的信息分销成本被大大降低.用户与服务供应商之间.用户与用户之间的沟通路径逐渐打通,沟通的场景也在不断扩展.这促使所有的移动应用开发者都要从用户 ...