题目链接:http://poj.org/problem?id=2763

题意:给一个数,边之间有权值,然后两种操作,第一种:求任意两点的权值和,第二,修改树上两点的权值。

题解:简单的树链剖分。

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int M = 1e5 + 10;
struct Edge {
int v , next;
}edge[M << 1];
int head[M] , e;
int top[M];
int fa[M];
int num[M];
int p[M];
int fp[M];
int deep[M];
int son[M];
int pos;
void init() {
memset(head , -1 , sizeof(head));
memset(son , -1 , sizeof(son));
e = 0;
pos = 1;
}
void add(int u , int v) {
edge[e].v = v;
edge[e].next = head[u];
head[u] = e++;
}
void dfs1(int u , int pre , int d) {
deep[u] = d;
fa[u] = pre;
num[u] = 1;
for(int i = head[u] ; i != -1 ; i = edge[i].next) {
int v = edge[i].v;
if(v != pre) {
dfs1(v , u , d + 1);
num[u] += num[v];
if(son[u] == -1 || num[son[u]] < num[v]) {
son[u] = v;
}
}
}
}
void getpos(int u , int sp) {
top[u] = sp;
p[u] = pos++;
fp[p[u]] = u;
if(son[u] == -1) return ;
getpos(son[u] , sp);
for(int i = head[u] ; i != -1 ; i = edge[i].next) {
int v = edge[i].v;
if(v != son[u] && v != fa[u]) {
getpos(v , v);
}
}
}
struct TnT {
int l , r , sum;
}T[M << 2];
int ed[M][3];
void pushup(int i) {
T[i].sum = T[i << 1].sum + T[(i << 1) | 1].sum;
}
void build(int l , int r , int i) {
int mid = (l + r) >> 1;
T[i].l = l , T[i].r = r , T[i].sum = 0;
if(l == r) {
return ;
}
build(l , mid , i << 1);
build(mid + 1 , r , (i << 1) | 1);
pushup(i);
}
void updata(int pos , int i , int ad) {
int mid = (T[i].l + T[i].r) >> 1;
if(T[i].l == T[i].r && T[i].l == pos) {
T[i].sum = ad;
return ;
}
if(mid < pos) {
updata(pos , (i << 1) | 1 , ad);
}
else {
updata(pos , i << 1 , ad);
}
pushup(i);
}
int query(int l , int r , int i) {
int mid = (T[i].l + T[i].r) >> 1;
if(T[i].l == l && T[i].r == r) {
return T[i].sum;
}
pushup(i);
if(mid < l) {
return query(l , r , (i << 1) | 1);
}
else if(mid >= r) {
return query(l , r , i << 1);
}
else {
return query(l , mid , i << 1) + query(mid + 1 , r , (i << 1) | 1);
}
}
int find(int u , int v) {
int f1 = top[u] , f2 = top[v];
int tmp = 0;
while(f1 != f2) {
if(deep[f1] < deep[f2]) {
swap(f1 , f2);
swap(u , v);
}
tmp += query(p[f1] , p[u] , 1);
u = fa[f1] , f1 = top[u];
}
if(u == v) return tmp;
if(deep[u] > deep[v]) swap(u , v);
return tmp + query(p[son[u]] , p[v] , 1);
}
int main() {
int n , q , s , cp , u , v;
scanf("%d%d%d" , &n , &q , &s);
init();
for(int i = 0 ; i < n - 1 ; i++) {
for(int j = 0 ; j < 3 ; j++) {
scanf("%d" , &ed[i][j]);
}
add(ed[i][0] , ed[i][1]);
add(ed[i][1] , ed[i][0]);
}
dfs1(1 , 0 , 0);
getpos(1 , 1);
build(0 , pos , 1);
for(int i = 0 ; i < n - 1 ; i++) {
if(deep[ed[i][0]] > deep[ed[i][1]]) {
swap(ed[i][0] , ed[i][1]);
}
updata(p[ed[i][1]] , 1 , ed[i][2]);
}
while(q--) {
scanf("%d" , &cp);
if(cp == 0) {
scanf("%d" , &u);
printf("%d\n" , find(s , u));
s = u;
}
else {
scanf("%d%d" , &u , &v);
updata(p[ed[u - 1][1]] , 1 , v);
}
}
return 0;
}

poj 2763 Housewife Wind(树链剖分+单点查询+区间修改)的更多相关文章

  1. POJ - 2763 Housewife Wind (树链剖分/ LCA+RMQ+树状数组)

    题意:有一棵树,每条边给定初始权值.一个人从s点出发.支持两种操作:修改一条边的权值:求从当前位置到点u的最短路径. 分析:就是在边可以修改的情况下求树上最短路.如果不带修改的话,用RMQ预处理LCA ...

  2. POJ 2763 Housewife Wind (树链剖分 有修改单边权)

    题目链接:http://poj.org/problem?id=2763 n个节点的树上知道了每条边权,然后有两种操作:0操作是输出 当前节点到 x节点的最短距离,并移动到 x 节点位置:1操作是第i条 ...

  3. poj 2763 Housewife Wind : 树链剖分维护边 O(nlogn)建树 O((logn)²)修改与查询

    /** problem: http://poj.org/problem?id=2763 **/ #include<stdio.h> #include<stdlib.h> #in ...

  4. poj 2763 Housewife Wind(树链拆分)

    id=2763" target="_blank" style="">题目链接:poj 2763 Housewife Wind 题目大意:给定一棵 ...

  5. POJ 2763 Housewife Wind 树链拋分

    一.前言 这破题WA了一天,最后重构还是WA,最后通过POJ讨论版得到的数据显示,我看上去是把某个变量写错了..于是,还是低级错误背锅啊....代码能力有待进一步提升2333333 二.题意 某家庭主 ...

  6. POJ2763 Housewife Wind 树链剖分 边权

    POJ2763 Housewife Wind 树链剖分 边权 传送门:http://poj.org/problem?id=2763 题意: n个点的,n-1条边,有边权 修改单边边权 询问 输出 当前 ...

  7. poj 2763(RMQ+BIT\树链剖分)

    传送门:Problem 2763 https://www.cnblogs.com/violet-acmer/p/9686774.html 题意: 一对夫妇居住在xx村庄,小屋之间有双向可达的道路,不会 ...

  8. BZOJ 1036: [ZJOI2008]树的统计Count(树链剖分+单点更新+区间求和+区间求最大值)

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1036 题意:略. 题解:树链剖分模版,注意一些细节即可. #include <ios ...

  9. SPOJ - QTREE(树链剖分+单点更新+区间最大值查询)

    题意:给出n个点n-1条边的树,有两个操作,一个是查询节点l到r的边的最大值,然后指定边的更改权值. 题解:差不多是树链剖分的模版题,注意每个点表示的边是连向其父亲节点的边. #include < ...

随机推荐

  1. 解决:Navicat连接不上MySQL 8.0

    转载自 https://www.cnblogs.com/shiysin/p/shiysin.html Navicat连接不上,总是报错1251: 原因是MySQL8.0版本的加密方式和MySQL5.0 ...

  2. 不等"金九银十",金风八月,我早已拿下字节跳动的offer

    字节跳动,我是在网上投的简历,之前也投过一次,简历都没通过删选,后来让师姐帮我改了一下简历,重新投另一个部门,获得了面试机会.7月23日,中午HR打电话过来预约了下午4点半面试,说会在线写代码,让我准 ...

  3. luogu1220_关路灯 区间dp

    传送门 区间dp f[i][j][state] : [i, j]区间 state=0 当前选i state = 1 当前选j 注意枚举的顺序 转移的设计时 在同时刻不在[i,j]区间里的数也要考虑 不 ...

  4. JVM系列(1)- JVM常见参数及堆内存分配

    常见参数配置 基于JDK1.6 -XX:+PrintGC 每次触发GC的时候打印相关日志 -XX:+UseSerialGC 串行回收模式 -XX:+PrintGCDetails 打印更详细的GC日志 ...

  5. MyBatis之#{} and ${}

    #{} 和 ${} 之间最大的差别就是  #{}会在使用的时候被加上 ‘’ 引号, ${}直接传值,不做任何处理 1.#{}对传入的参数会做预编译,也就是会当做字符串来处理 select * from ...

  6. Selenium+java - Ajax浮动框处理

    Ajax浮动框 我们常遇到的某些网站首页输入框,点击后显示的浮动下拉热点,如下图: 实际案例 模拟场景如下: hao123首页搜索输入框,单击搜索框,点击浮动框中的哪吒票房破30亿,单击后选项的文字内 ...

  7. 逆向破解之160个CrackMe —— 004-005

    CrackMe —— 004 160 CrackMe 是比较适合新手学习逆向破解的CrackMe的一个集合一共160个待逆向破解的程序 CrackMe:它们都是一些公开给别人尝试破解的小程序,制作 c ...

  8. android——Fragment

    谷歌官方文档的介绍: https://developer.android.com/guide/components/fragments.html#Design Fragment 表示 Activity ...

  9. 利用cookie实现浏览器中多个标签页之间的通信

    原理: cookie是浏览器端的存储容器,而且它是多页面共享的,利用cookie多页面共享的特性,可以实现多个标签页的通信. 比如: 一个标签页发送消息(将发送的消息设置到cookie中),一个标签页 ...

  10. 并发模型与IO模型梳理

    并发模型 常见的并发模型一般包括3类,基于线程与锁的内存共享模型,actor模型和CSP模型,其中尤以线程与锁的共享内存模型最为常见.由于go语言的兴起,CSP模型也越来越受关注.基于锁的共享内存模型 ...