P4388 付公主的矩形

前置芝士

\(gcd\)与欧拉函数

要求对其应用于性质比较熟,否则建议左转百度

思路

有\(n×m\)的矩阵,题目要求对角线经过的格子有\(N\)个,

设函数\(f(x,y)\)为矩阵\((x,y)\)对角线经过的格子

设\(gcd(n,m)=1\),对角线在矩形中不会经过任意一个格点,\(f(n,m)=n+m-1\)

那\(gcd(n,m)!=1\)呢?将这个矩阵拆除\(gcd(n,m)\)个相同的矩阵

其中\(gcd(n',m')=1\),则\(\dfrac{n}{n'}=\dfrac{m}{m'}\)

所以我们能推倒出公式

\(f(n,m)=\dfrac{n}{n'}f(n',m')\)

\(~~~~~~~~~~~~~=\dfrac{n}{n'}×(n'+m'-1)\)

\(~~~~~~~~~~~~~=\dfrac{n×n'}{n'}+\dfrac{m×m'}{m'}-gcd(n,m)\)

\(~~~~~~~~~~~~~=n+m-gcd(n,m)\)

则我们要求\((n,m)\)的对数使得 \(n+m-gcd(n,m)=N\)

设\(i=gcd(n,m)\)

$n+m-gcd(n,m)=N $

\(\Rightarrow \dfrac{n}{i}+\dfrac{m}{i}-1=\dfrac{N}{i}\)

\(\Rightarrow \dfrac{n}{i}+\dfrac{m}{i}=\dfrac{N}{i}+1\)

我们枚举\(gcd(n,m)\)也就是\(i\),那我们怎么求呢?

欧拉函数有一性质\(\varphi(N)\),\(N>2\)时,\(\varphi(N)\)为偶数

所以\(nun=\varphi(\dfrac{N}{i}+1)\)

跑得比较慢(200ms)

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const LL maxn=1000007;
LL n,tot,ans;
LL phi[maxn],pim[maxn>>1];
inline void First(){
for(LL i=2;i<=n+1;i++){
if(!phi[i])
phi[i]=i-1,
pim[++tot]=i;
for(LL j=1;j<=tot&&pim[j]*i<maxn;j++)
if(i%pim[j]==0){
phi[i*pim[j]]=phi[i]*pim[j];
break;
}else
phi[i*pim[j]]=phi[i]*(pim[j]-1);
}
}
int main () {
scanf("%lld",&n);
First();
for(LL i=1;i<=n;i++)
if(n%i==0)
ans+=phi[n/i+1];
printf("%lld",ans+1>>1);
return 0;
}

剪一下枝(100ms)

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
inline int Read(){
int x=0,f=1; char c=getchar();
while(c<'0'||c>'9'){
if(c=='-') f=-1; c=getchar();
}
while(c>='0'&&c<='9')
x=(x<<3)+(x<<1)+c-'0',c=getchar();
return x*f;
}
const LL maxn=1000007;
int n,tot;
int phi[maxn],pim[maxn>>1];
LL ans;
inline void First(){
for(int i=2;i<=n+1;i++){
if(!phi[i])
phi[i]=i-1,
pim[++tot]=i;
for(int j=1;j<=tot&&pim[j]*i<maxn;j++)
if(i%pim[j]==0){
phi[i*pim[j]]=phi[i]*pim[j];
break;
}else
phi[i*pim[j]]=phi[i]*(pim[j]-1);
}
}
int main () {
n=Read();
First();
for(int i=1;i*i<=n;i++)
if(n%i==0)
if(i*i==n)
ans+=phi[i+1];
else
ans+=phi[i+1]+phi[n/i+1];
printf("%lld",ans+1>>1);
return 0;
}

P4388 付公主的矩形(gcd+欧拉函数)的更多相关文章

  1. BZOJ_2186_[Sdoi2008]沙拉公主的困惑_欧拉函数

    BZOJ_2186_[Sdoi2008]沙拉公主的困惑_欧拉函数 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行 ...

  2. [洛谷P4388] 付公主的矩形

    18.09.09模拟赛T1. 一道数学题. 题目传送门 首先把对角线当成是某个点的移动轨迹,从左下到右上. 那么这个点每上升一个单位长度,就穿过一个格子. 每右移一个单位长度,也会穿过一个格子. 例外 ...

  3. BZOJ 2818: Gcd [欧拉函数 质数 线性筛]【学习笔记】

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 4436  Solved: 1957[Submit][Status][Discuss ...

  4. POJ 2773 Happy 2006【GCD/欧拉函数】

    根据欧几里德算法,gcd(a,b)=gcd(a+b*t,b) 如果a和b互质,则a+b*t和b也互质,即与a互质的数对a取模具有周期性. 所以只要求出小于n且与n互质的元素即可. #include&l ...

  5. HDU 2588 GCD (欧拉函数)

    GCD Time Limit: 1000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & %I64u Submit Status De ...

  6. Bzoj-2818 Gcd 欧拉函数

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2818 题意:给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x ...

  7. BZOJ2818: Gcd 欧拉函数求前缀和

    给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 如果两个数的x,y最大公约数是z,那么x/z,y/z一定是互质的 然后找到所有的素数,然后用欧拉函数求一 ...

  8. hdu2588 gcd 欧拉函数

    GCD Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  9. HDU 1695 GCD 欧拉函数+容斥定理

    输入a b c d k求有多少对x y 使得x在a-b区间 y在c-d区间 gcd(x, y) = k 此外a和c一定是1 由于gcd(x, y) == k 将b和d都除以k 题目转化为1到b/k 和 ...

随机推荐

  1. Jmeter3.0-插件管理

    本文转自推酷:http://www.tuicool.com/articles/UV7fI3V JMeter ,老牌,开源,轻量,Apache基金会的顶级项目,光是这些关键字就足以让大量用户将其纳入自己 ...

  2. 02-1设置第一启动项--电脑怎么进入BIOS的方法集合

    电脑怎么进入BIOS的方法集合 很多时候为了对电脑进行相关设置,我们必须进入电脑的bios界面,但是不同的电脑进入bios的方法各不相同,小编今天就在这儿将各种电脑进入bios的方法汇总一下,希望对你 ...

  3. C#中FileStream和StreamWriter/StreamReader的区别

    首先致谢!转自:http://blog.sina.com.cn/s/blog_67299aec0100snk4.html   本篇可能不是非常深入,但是胜在清晰明了   FileStream对象表示在 ...

  4. 高效抽取loading,再多的载入页面也不怕

    当今的app基本上有两个操作,一个是载入数据 ,一个就是把数据显示到页面上.但假设页面特别的多.就每一个页面都要载入数据,就要写 loading 页面.我之前就是用dialog写,抽取出来一个类.哪里 ...

  5. android性能优化学习笔记(加快应用程序启动速度:)

    一:安卓中应用程序的启动方式有两种: 冷启动:后台没有该应用进程,系统会重新创建一个进程分配给该应用(所以会先创建和初始化Application类,再创建和初始化MainActivity,包括测量,布 ...

  6. swift中代理的使用

    1.首先定义一份协议. protocol HttpToolProrocol{ //1.代理方法,将server返回的字典传递给调用者 func didRecieveResults(result:NSD ...

  7. Android遇到的那些坑

    1.输出log Log.i("GOOD",v.getId()+"");

  8. AjaxPro.2.dll AjaxPro.AjaxMethod 前后台交互

    我们需要下载 AjaxPro.2.zip.然后把下载到的 AjaxPro.2.dll 的文件引入到项目. 1.接着,在 Web.config 的 <system.web> 标签下写入以下内 ...

  9. Google Code Jam 2014 Round 1 A:Problem A Charging Chaos

    Problem Shota the farmer has a problem. He has just moved into his newly built farmhouse, but it tur ...

  10. erlang 求N以内的质数

    素数,又称质数,在一个大于1的自然数中,除了1和此整数自身之外,不能被其他自然数整除的数. 比1大但不是素数的数称为合数. 1和0既不是素数,也不是合数. 算术基本定理证明每个大于1的正整数都可以写成 ...