Spark Structured streaming API支持的输出源有:Console、Memory、File和Foreach。其中Console在前两篇博文中已有详述,而Memory使用非常简单。本文着重介绍File和Foreach两种方式,并介绍如何在源码基本扩展新的输出方式。

1. File

  Structured Streaming支持将数据以File形式保存起来,其中支持的文件格式有四种:json、text、csv和parquet。其使用方式也非常简单只需设置checkpointLocation和path即可。checkpointLocation是检查点保存的路径,而path是真实数据保存的路径。

如下所示的测试例子:

// Create DataFrame representing the stream of input lines from connection to host:port

val lines = spark.readStream

.format("socket")

.option("host", host)

.option("port", port)

.load()

// Split the lines into words

val words = lines.as[String].flatMap(_.split(" "))

// Generate running word count

val wordCounts = words.groupBy("value").count()

// Start running the query that prints the running counts to the console

val query = wordCounts.writeStream

.format("json")

.option("checkpointLocation","root/jar")

.option("path","/root/jar")

.start()

注意:

File形式不能设置"compelete"模型,只能设置"Append"模型。由于Append模型不能有聚合操作,所以将数据保存到外部File时,不能有聚合操作。

2. Foreach

  foreach输出方式只需要实现ForeachWriter抽象类,并实现三个方法,当Structured Streaming接收到数据就会执行其三个方法,如下的测试示例:

/*

* Licensed to the Apache Software Foundation (ASF) under one or more

* contributor license agreements. See the NOTICE file distributed with

* this work for additional information regarding copyright ownership.

* The ASF licenses this file to You under the Apache License, Version 2.0

* (the "License"); you may not use this file except in compliance with

* the License. You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

// scalastyle:off println

package org.apache.spark.examples.sql.streaming

import org.apache.spark.sql.SparkSession

/**

* Counts words in UTF8 encoded, '\n' delimited text received from the network.

*

* Usage: StructuredNetworkWordCount <hostname> <port>

* <hostname> and <port> describe the TCP server that Structured Streaming

* would connect to receive data.

*

* To run this on your local machine, you need to first run a Netcat server

* `$ nc -lk 9999`

* and then run the example

* `$ bin/run-example sql.streaming.StructuredNetworkWordCount

* localhost 9999`

*/

object StructuredNetworkWordCount {

def main(args: Array[String]) {

if (args.length < 2) {

System.err.println("Usage: StructuredNetworkWordCount <hostname> <port>")

System.exit(1)

}

val host = args(0)

val port = args(1).toInt

val spark = SparkSession

.builder

.appName("StructuredNetworkWordCount")

.getOrCreate()

import spark.implicits._

// Create DataFrame representing the stream of input lines from connection to host:port

val lines = spark.readStream

.format("socket")

.option("host", host)

.option("port", port)

.load()

// Start running the query that prints the running counts to the console

val query = wordCounts.writeStream

.outputMode("append")

.foreach(new ForearchWriter[Row]{

override def open(partitionId:Long,version:Long):Boolean={

println("open")

return true

}

override def process(value:Row):Unit={

val spark = SparkSession.builder.getOrCreate()

val seq = value.mkString.split(" ")

val row = Row.fromSeq(seq)

val rowRDD:RDD[Row] = sparkContext.getOrCreate().parallelize[Row](Seq(row))

val userSchema = new StructType().add("name","String").add("age","String")

val peopleDF = spark.createDataFrame(rowRDD,userSchema)

peopleDF.createOrReplaceTempView(myTable)

spark.sql("select * from myTable").show()

}

override def close(errorOrNull:Throwable):Unit={

println("close")

}

})

.start()

query.awaitTermination()

}

}

// scalastyle:on println

  上述程序是直接继承ForeachWriter类的接口,并实现了open()、process()、close()三个方法。若采用显示定义一个类来实现,需要注意Scala的泛型设计,如下所示:

class myForeachWriter[T<:Row](stream:CatalogTable) extends ForearchWriter[T]{

override def open(partionId:Long,version:Long):Boolean={

println("open")

true

}

override def process(value:T):Unit={

println(value)

}

override def close(errorOrNull:Throwable):Unit={

println("close")

}

}

3. 自定义

  若上述Spark Structured Streaming API提供的数据输出源仍不能满足要求,那么还有一种方法可以使用:修改源码。

如下通过实现一种自定义的Console来介绍这种使用方式:

3.1 ConsoleSink

  Spark有一个Sink接口,用户可以实现该接口的addBatch方法,其中的data参数是接收的数据,如下所示直接将其输出到控制台:

class ConsoleSink(streamName:String) extends Sink{

override def addBatch(batchId:Long, data;DataFrame):Unit = {

data.show()

}

}

3.2 DataStreamWriter

  在用户自定义的输出形式时,并调用start()方法后,Spark框架会去调用DataStreamWriter类的start()方法。所以用户可以直接在该方法中添加自定义的输出方式,如我们向其传递上述创建的ConsoleSink类示例,如下所示:

def start():StreamingQuery={

if(source == "memory"){

...

}else if(source=="foreach"){

...

}else if(source=="consoleSink"){

val streamName:String = extraOption.get("streamName") mathc{

case Some(str):str

case None=>throw new AnalysisException("streamName option must be specified for Sink")

}

val sink = new consoleSink(streamName)

df.sparkSession.sessionState.streamingQueryManager.startQuery(

extraOption.get("queryName"),

extraOption.get("checkpointLocation"),

df,

sink,

outputMode,

useTempCheckpointLocaltion = true,

recoverFromCheckpointLocation = false,

trigger = trigger

)

}else{

...

}

}

3.3 Structured Streaming

  在前两部修改和实现完成后,用户就可以按正常的Structured Streaming API方式使用了,唯一不同的是在输出形式传递的参数是"consoleSink"字符串,如下所示:

def execute(stream:CatalogTable):Unit={

val spark = SparkSession

.builder

.appName("StructuredNetworkWordCount")

.getOrCreate()

/**1. 获取数据对象DataFrame*/

val lines = spark.readStream

.format("socket")

.option("host", "localhost")

.option("port", 9999)

.load()

/**2. 启动Streaming开始接受数据源的信息*/

val query:StreamingQuery = lines.writeStream

.outputMode("append")

.format("consoleSink")

.option("streamName","myStream")

.start()

query.awaitTermination()

}

4. 参考文献

[1]. Structured Streaming Programming Guide.

Spark Structured Streaming框架(3)之数据输出源详解的更多相关文章

  1. Spark Structured Streaming框架(2)之数据输入源详解

    Spark Structured Streaming目前的2.1.0版本只支持输入源:File.kafka和socket. 1. Socket Socket方式是最简单的数据输入源,如Quick ex ...

  2. Spark Structured Streaming框架(2)之数据输入源详解

    Spark Structured Streaming目前的2.1.0版本只支持输入源:File.kafka和socket. 1. Socket Socket方式是最简单的数据输入源,如Quick ex ...

  3. Spark Structured streaming框架(1)之基本使用

     Spark Struntured Streaming是Spark 2.1.0版本后新增加的流计算引擎,本博将通过几篇博文详细介绍这个框架.这篇是介绍Spark Structured Streamin ...

  4. Spark Structured Streaming框架(1)之基本用法

     Spark Struntured Streaming是Spark 2.1.0版本后新增加的流计算引擎,本博将通过几篇博文详细介绍这个框架.这篇是介绍Spark Structured Streamin ...

  5. Spark Structured Streaming框架(4)之窗口管理详解

    1. 结构 1.1 概述 Structured Streaming组件滑动窗口功能由三个参数决定其功能:窗口时间.滑动步长和触发时间. 窗口时间:是指确定数据操作的长度: 滑动步长:是指窗口每次向前移 ...

  6. Spark Structured Streaming框架(5)之进程管理

    Structured Streaming提供一些API来管理Streaming对象.用户可以通过这些API来手动管理已经启动的Streaming,保证在系统中的Streaming有序执行. 1. St ...

  7. Kafka:ZK+Kafka+Spark Streaming集群环境搭建(二十九):推送avro格式数据到topic,并使用spark structured streaming接收topic解析avro数据

    推送avro格式数据到topic 源代码:https://github.com/Neuw84/structured-streaming-avro-demo/blob/master/src/main/j ...

  8. Kafka:ZK+Kafka+Spark Streaming集群环境搭建(十一)定制一个arvo格式文件发送到kafka的topic,通过Structured Streaming读取kafka的数据

    将arvo格式数据发送到kafka的topic 第一步:定制avro schema: { "type": "record", "name": ...

  9. DataFlow编程模型与Spark Structured streaming

    流式(streaming)和批量( batch):流式数据,实际上更准确的说法应该是unbounded data(processing),也就是无边界的连续的数据的处理:对应的批量计算,更准确的说法是 ...

随机推荐

  1. 自己动手开发IOC容器

    前两天写简历.写了一句:精通Spring IoC容器.怎么个精通法?还是自己动手写个IOC容器吧. 什么是IoC(Inversion of Control)?什么是DI(Dependency Inje ...

  2. Angular $httpProvider

    timeout超时响应 .factory('timestampMarker', ["$rootScope", function () { var timestampMarker = ...

  3. python 的三元表达式

    python中的三目运算符不像其他语言 其他的一般都是 判定条件?为真时的结果:为假时的结果 如 result=5>3?1:0 这个输出1,但没有什么意义,仅仅是一个例子. 而在python中的 ...

  4. Linux 能PING IP 但不能PING 主机域名的解决方法 vim /etc/nsswitch.conf hosts: files dns wins

    Linux 能PING IP 但不能PING 主机域名的解决方法 转载 2013年12月25日 10:24:27 13749 . vi /etc/nsswitch.conf hosts: files ...

  5. git学习之简介(一)

    一.前言 史上最浅显易懂的Git教程! 为什么要编写这个教程?因为我在学习Git的过程中,买过书,也在网上Google了一堆Git相关的文章和教程,但令人失望的是,这些教程不是难得令人发指,就是简单得 ...

  6. pip安装错误,用镜像

    Retrying (Retry(total=4, connect=None, read=None, redirect=None)) after connection broken by 'Connec ...

  7. synchronized是什么

        在再有人问你Java内存模型是什么,就把这篇文章发给他中我们曾经介绍过,Java语言为了解决并发编程中存在的原子性.可见性和有序性问题,提供了一系列和并发处理相关的关键字,比如synchron ...

  8. JVM调优- jstat(转)

    jstat的用法 用以判断JVM是否存在内存问题呢?如何判断JVM垃圾回收是否正常?一般的top指令基本上满足不了这样的需求,因为它主要监控的是总体的系统资源,很难定位到java应用程序. Jstat ...

  9. No breeds found in the signature, a signature update is recommended

    cobbler 2.6.11 遇到这个问题,需要 >> cobbler signature update >> and cobblerd restart 转自: https:/ ...

  10. c#基础系列:序列化效率比拼——谁是最后的赢家Newtonsoft.Json

    前言:作为开发人员,对象的序列化恐怕难以避免.楼主也是很早以前就接触过序列化,可是理解都不太深刻,对于用哪种方式去做序列化更是随波逐流——项目中原来用的什么方式照着用就好了.可是这么多年自己对于这东西 ...