bagging与boosting集成学习、随机森林
主要内容:
一.bagging、boosting集成学习
二.随机森林
一.bagging、boosting集成学习
1.bagging:
从原始样本集中独立地进行k轮抽取,生成训练集。每轮从原始样本集中使用Bootstraping方法抽取(即又放回地抽取)n个样本点(样本集与训练集的大小同为n。在一个训练集中,有些样本可能被多次抽取到,而有些样本可能一次都没有被抽中)。最后得到得到k个独立的训练集,然后利用这k个训练集去训练k个分类器。将输入数据输入到这k个分类器中,得到k个结果,最后再以投票的方式(即每个分类器的权重相等)决定最后的分类。
2.boosting:
使用一个训练集,将这个训练集串行地输入到k个分类器当中。对于当前分类器(假设训练集已经在前面经过了若干个分类器),它重点关注那些之前被错误分类的样本点,做法是增大这些错分样本点的权重。在最后的决策中,与bagging不同的是:boosting中的分类器的权重并不相等,而是正确率越高的分类器其权重越大。
3.bagging与boosting的不同:
1)样本选择上:
Bagging:训练集是在原始集中有放回选取的,从原始集中选出的各轮训练集之间是独立的.
Boosting:每一轮的训练集不变,只是训练集中每个样例在分类器中的权重发生变化.而权值是根据上一轮的分类结果进行调整.
2)样例权重:
Bagging:使用均匀取样,每个样例的权重相等
Boosting:根据错误率不断调整样例的权值,错误率越大则权重越大.
3)预测函数:
Bagging:所有预测函数的权重相等.
Boosting:每个弱分类器都有相应的权重,对于分类误差小的分类器会有更大的权重.
4)并行计算:
Bagging:各个预测函数可以并行生成
Boosting:各个预测函数只能顺序生成,因为后一个模型参数需要前一轮模型的结果.
二.随机森林
随机森林,就是bagging方法下的k棵决策树,只不过在选取分割特征的时候加入了随机性。其具体算法如下:
1)从原始训练集中使用Bootstraping方法随机有放回采样选出m个样本,共进行n_tree次采样,生成n_tree个训练集。
2)对于n_tree个训练集,分别训练n_tree个决策树模型。
3)对于单个决策树模型,假设训练样本特征的个数为n,那么每次从中随机抽取出一个大小为m(1<=m<=n)的特征子集,分裂时根据信息增益/信息增益比/基尼指数等等,在这个特征子集中选择最好的特征进行分裂。
4)每棵树都一直这样分裂下去,直到该节点的所有训练样例都属于同一类。
5)将生成的多棵决策树组成随机森林。
bagging与boosting集成学习、随机森林的更多相关文章
- 吴裕雄 python 机器学习——集成学习随机森林RandomForestRegressor回归模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
- 吴裕雄 python 机器学习——集成学习随机森林RandomForestClassifier分类模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
- 机器学习:集成学习:随机森林.GBDT
集成学习(Ensemble Learning) 集成学习的思想是将若干个学习器(分类器&回归器)组合之后产生一个新学习器.弱分类器(weak learner)指那些分类准确率只稍微好于随机猜测 ...
- 机器学习之路:python 集成分类器 随机森林分类RandomForestClassifier 梯度提升决策树分类GradientBoostingClassifier 预测泰坦尼克号幸存者
python3 学习使用随机森林分类器 梯度提升决策树分类 的api,并将他们和单一决策树预测结果做出对比 附上我的git,欢迎大家来参考我其他分类器的代码: https://github.com/l ...
- 04-10 Bagging和随机森林
目录 Bagging算法和随机森林 一.Bagging算法和随机森林学习目标 二.Bagging算法原理回顾 三.Bagging算法流程 3.1 输入 3.2 输出 3.3 流程 四.随机森林详解 4 ...
- 集成学习二: Boosting
目录 集成学习二: Boosting 引言 Adaboost Adaboost 算法 前向分步算法 前向分步算法 Boosting Tree 回归树 提升回归树 Gradient Boosting 参 ...
- 集成学习之Boosting —— XGBoost
集成学习之Boosting -- AdaBoost 集成学习之Boosting -- Gradient Boosting 集成学习之Boosting -- XGBoost Gradient Boost ...
- 机器学习第5周--炼数成金-----决策树,组合提升算法,bagging和adaboost,随机森林。
决策树decision tree 什么是决策树输入:学习集输出:分类觃则(决策树) 决策树算法概述 70年代后期至80年代初期,Quinlan开发了ID3算法(迭代的二分器)Quinlan改迚了ID3 ...
- 【小白学AI】随机森林 全解 (从bagging到variance)
文章转自公众号[机器学习炼丹术],关注回复"炼丹"即可获得海量免费学习资料哦! 目录 1 随机森林 2 bagging 3 神秘的63.2% 4 随机森林 vs bagging 5 ...
随机推荐
- threw load() exception java.lang.ClassNotFoundException: org.springframework.web.servlet.DispatcherServlet(maven项目git后)
maven项目git全新项目后启动服务出现的, 错误原因: 进入到tomcat的部署路径.metadata\.plugins\org.eclipse.wst.server.core\tmp0\wtpw ...
- JavaScript 中的命名空间
全局变量应该由有系统范围相关性的对象们保留,并且它们的命名应该避免含糊并尽量减少命名冲突的风险.在实践中,这意味着你应该避免创建全局对象,除非它们是绝对必须的. 所以你对此是怎么做的?传统方法告诉我们 ...
- 使用Percona监控插件监控MySQL
1.使用Percona监控插件监控MySQL yum install http://www.percona.com/downloads/percona-release/redhat/0.1-3/per ...
- 使用Istio治理微服务入门
近两年微服务架构流行,主流互联网厂商内部都已经微服务化,初创企业虽然技术积淀不行,但也通过各种开源工具拥抱微服务.再加上容器技术赋能,Kubernetes又添了一把火,微服务架构已然成为当前软件架构设 ...
- 为什么 java wait/notify 必须与 synchronized 一起使用,jvm究竟做了些什么
这个课题提出来的是原先的线程并发解决的思路.目前解决线程并发,可以是lock接口结合condition 并发问题一直以来就是线程必不可少的话题. java 是第一个内置对多线程支持的主流编程语言.在 ...
- html5小趣味知识点系列(一)pubdate
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- 安装virtualBox 增强包
1 在原始操作系统安装. 2 打开USB设置. 3 运行虚拟机中的Linux中,Device->install guest additions 再安装增强包. 4 插入U盘,如果这时可以看到U盘 ...
- (转)linux设备驱动之USB数据传输分析 一
三:传输过程的实现说到传输过程,我们必须要从URB开始说起,这个结构的就好比是网络子系统中的skb,好比是I/O中的bio.USB系统的信息传输就是打成URB结构,然后再过行传送的.URB的全称叫US ...
- Jmeter 05 JMeter元件详解
1. JMeter 逻辑控制器 Switch条件控制器.While条件控制器.交替控制器.仅一次控制器.随机控制器.随机顺序控制器.条件控制器(如果(if)).循环控制器.录制控制器.ForEach控 ...
- 【BZOJ3791】作业 DP
[BZOJ3791]作业 Description 众所周知,白神是具有神奇的能力的.比如说,他对数学作业说一声“数”,数学作业就会出于畏惧而自己完成:对语文作业说一声“语”,语文作业就会出于畏惧而自己 ...