题意:

给一个有向图,然后选一条路径起点终点都为1的路径出来,有一次机会可以沿某条边逆方向走,问最多有多少个点可以被经过?(一个点在路径中无论出现多少正整数次对答案的贡献均为1)

=>有向图我们先考虑缩点。然后观察缩点后的图可以发现新的路径中必定只有一条边是反向的才符合条件。那么我们可以联想到某道最短路的题将边反向存一遍后分别从s和t跑一跑。那么这里bfs跑一跑就行了。然后有一个坑点:这种重建图的注意es和edges不然es会在中途就被修改掉了。。。

#include<cstdio>
#include<cstring>
#include<cctype>
#include<algorithm>
#include<queue>
#include<stack>
using namespace std;
#define rep(i,s,t) for(int i=s;i<=t;i++)
#define dwn(i,s,t) for(int i=s;i>=t;i--)
#define clr(x,c) memset(x,c,sizeof(x))
#define qwq(x) for(edge *o=head[x];o;o=o->next)
#define qaq(x) for(edge *o=hd[x];o;o=o->next)
#define TAT(x) for(edge *o=eo[x];o;o=o->next)
int read(){
int x=0;char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) x=x*10+c-'0',c=getchar();
return x;
}
const int nmax=1e5+5;
const int inf=0x7f7f7f7f; struct edge{
int to;edge *next;
};edge es[nmax],edges[nmax<<1],*pt=es,*head[nmax],*hd[nmax],*eo[nmax];
void add(int u,int v){
pt->to=v;pt->next=head[u];head[u]=pt++;
}
void adde(int u,int v){
pt->to=v;pt->next=hd[u];hd[u]=pt++;
pt->to=u;pt->next=eo[v];eo[v]=pt++;
}
int pre[nmax],dfs_clock=0,scc_cnt=0,sccno[nmax],sm[nmax];
stack<int>s;
int dfs(int x){
int lowu=pre[x]=++dfs_clock;s.push(x);
qwq(x){
if(!pre[o->to]) lowu=min(lowu,dfs(o->to));
else if(!sccno[o->to]) lowu=min(lowu,pre[o->to]);
}
if(lowu==pre[x]){
++scc_cnt;int tc=0;
while(1){
int tx=s.top();s.pop();
sccno[tx]=scc_cnt;++tc;
if(x==tx) break;
}
sm[scc_cnt]=tc;
}
return lowu;
} queue<int>q;bool vis[nmax];int f[nmax],g[nmax];
int test_cnt=0;
void bfs1(int x){
q.push(x);f[x]=sm[x];int tx;clr(vis,0);
while(!q.empty()){
tx=q.front();q.pop();vis[tx]=0;
qaq(tx) if(f[o->to]<f[tx]+sm[o->to]){
f[o->to]=f[tx]+sm[o->to];
if(!vis[o->to]) q.push(o->to),vis[o->to]=1;
}
}
}
void bfs2(int x){
q.push(x);g[x]=sm[x];int tx;clr(vis,0);
while(!q.empty()){
tx=q.front();q.pop();vis[tx]=0;
TAT(tx) if(g[o->to]<g[tx]+sm[o->to]){
g[o->to]=g[tx]+sm[o->to];
if(!vis[o->to]) q.push(o->to),vis[o->to]=1;
}
}
} int main(){
int n=read(),m=read(),u,v;
rep(i,1,m) u=read(),v=read(),add(u,v);
rep(i,1,n) if(!pre[i]) dfs(i);
//rep(i,1,n) printf("%d ",sccno[i]);printf("\n"); pt=edges;
rep(i,1,n) qwq(i) if(sccno[i]!=sccno[o->to]) adde(sccno[i],sccno[o->to]);
bfs1(sccno[1]);bfs2(sccno[1]);
//rep(i,1,scc_cnt) printf("%d %d\n",f[i],g[i]); int ans=sm[sccno[1]];
rep(i,1,scc_cnt) qaq(i) {
if(g[i]&&f[o->to]) ans=max(ans,g[i]+f[o->to]-sm[sccno[1]]);
}
printf("%d\n",ans);return 0;
}

  

3887: [Usaco2015 Jan]Grass Cownoisseur

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 179  Solved: 92
[Submit][Status][Discuss]

Description

In an effort to better manage the grazing patterns of his cows, Farmer John has installed one-way cow paths all over his farm. The farm consists of N fields, conveniently numbered 1..N, with each one-way cow path connecting a pair of fields. For example, if a path connects from field X to field Y, then cows are allowed to travel from X to Y but not from Y to X. Bessie the cow, as we all know, enjoys eating grass from as many fields as possible. She always starts in field 1 at the beginning of the day and visits a sequence of fields, returning to field 1 at the end of the day. She tries to maximize the number of distinct fields along her route, since she gets to eat the grass in each one (if she visits a field multiple times, she only eats the grass there once). As one might imagine, Bessie is not particularly happy about the one-way restriction on FJ's paths, since this will likely reduce the number of distinct fields she can possibly visit along her daily route. She wonders how much grass she will be able to eat if she breaks the rules and follows up to one path in the wrong direction. Please compute the maximum number of distinct fields she can visit along a route starting and ending at field 1, where she can follow up to one path along the route in the wrong direction. Bessie can only travel backwards at most once in her journey. In particular, she cannot even take the same path backwards twice.
给一个有向图,然后选一条路径起点终点都为1的路径出来,有一次机会可以沿某条边逆方向走,问最多有多少个点可以被经过?(一个点在路径中无论出现多少正整数次对答案的贡献均为1)

Input

The first line of input contains N and M, giving the number of fields and the number of one-way paths (1 <= N, M <= 100,000). The following M lines each describe a one-way cow path. Each line contains two distinct field numbers X and Y, corresponding to a cow path from X to Y. The same cow path will never appear more than once.

Output

A single line indicating the maximum number of distinct fields Bessie
can visit along a route starting and ending at field 1, given that she can
follow at most one path along this route in the wrong direction.
 

Sample Input

7 10
1 2
3 1
2 5
2 4
3 7
3 5
3 6
6 5
7 2
4 7

Sample Output

6

HINT

 

Source

bzoj3887: [Usaco2015 Jan]Grass Cownoisseur的更多相关文章

  1. BZOJ3887 [Usaco2015 Jan] Grass Cownoisseur 【tarjan】【DP】*

    BZOJ3887 [Usaco2015 Jan] Grass Cownoisseur Description In an effort to better manage the grazing pat ...

  2. BZOJ3887 [Usaco2015 Jan]Grass Cownoisseur[缩点]

    首先看得出缩点的套路.跑出DAG之后,考虑怎么用逆行条件.首先可以不用,这样只能待原地不动.用的话,考虑在DAG上向后走,必须得逆行到1号点缩点后所在点的前面,才能再走回去. 于是统计从1号点缩点所在 ...

  3. [补档][Usaco2015 Jan]Grass Cownoisseur

    [Usaco2015 Jan]Grass Cownoisseur 题目 给一个有向图,然后选一条路径起点终点都为1的路径出来,有一次机会可以沿某条边逆方向走,问最多有多少个点可以被经过? (一个点在路 ...

  4. [bzoj3887][Usaco2015 Jan]Grass Cownoisseur_trajan_拓扑排序_拓扑序dp

    [Usaco2015 Jan]Grass Cownoisseur 题目大意:给一个有向图,然后选一条路径起点终点都为1的路径出来,有一次机会可以沿某条边逆方向走,问最多有多少个点可以被经过?(一个点在 ...

  5. 洛谷—— P3119 [USACO15JAN]草鉴定Grass Cownoisseur || BZOJ——T 3887: [Usaco2015 Jan]Grass Cownoisseur

    http://www.lydsy.com/JudgeOnline/problem.php?id=3887|| https://www.luogu.org/problem/show?pid=3119 D ...

  6. [Usaco2015 Jan]Grass Cownoisseur Tarjan缩点+SPFA

    考试的时候忘了缩点,人为dfs模拟缩点,没想到竟然跑了30分,RB爆发... 边是可以重复走的,所以在同一个强连通分量里,无论从那个点进入从哪个点出,所有的点一定能被一条路走到. 要使用缩点. 然后我 ...

  7. [Usaco2015 Jan]Grass Cownoisseur 图论 tarjan spfa

    先缩点,对于缩点后的DAG,正反跑spfa,枚举每条边进行翻转即可 #include<cstdio> #include<cstring> #include<iostrea ...

  8. BZOJ 3887/Luogu P3119: [Usaco2015 Jan]Grass Cownoisseur (强连通分量+最长路)

    分层建图,反向边建在两层之间,两层内部分别建正向边,tarjan缩点后,拓扑排序求一次1所在强连通分量和1+n所在强联通分量的最长路(长度定义为路径上的强联通分量内部点数和).然后由于1所在强连通分量 ...

  9. BZOJ 3887: [Usaco2015 Jan]Grass Cownoisseur tarjan + spfa

    Code: #include <bits/stdc++.h> #define setIO(s) freopen(s".in","r",stdin) ...

随机推荐

  1. 洛谷P3478 [POI2008]STA-Station

    P3478 [POI2008]STA-Station 题目描述 The first stage of train system reform (that has been described in t ...

  2. shell括号和linux算术运算

    一.小括号() 1. 单小括号() a).命令组 (a=0;touch a.txt) 小括号中的内容会开启一个子shell独立运行:括号中以分号连接,最后一个命令不需要:各命令和括号无空格 b).命令 ...

  3. js源码 模仿 jquery的ajax的获取数据(get,post )的请求封装

    function ajax(obj){ // 默认参数 var defaults = { type : 'get', data : {}, url : '#', dataType : 'text', ...

  4. require、require_once、include、include_once

    在 PHP 中,您可以在服务器执行 PHP 文件之前在该文件中插入一个文件的内容. include 和 require 语句用于在执行流中插入写在其他文件中的有用的代码. include 和 requ ...

  5. linux限制内存和磁盘使用

    一.如何限制用户的磁盘空间 1. 查看系统中所有用户的磁盘空间配额 sudo repquota /dev/vda1 2. 查看某个用户的磁盘空间配额 sudo edquota user_name 要想 ...

  6. CentOS7.3下Zabbix3.5之邮件报警配置

    一.邮件客户端以及脚本相关配置 1.安装sendmail,一般操作系统默认安装了安装 yum install sendmail 启动 service sendmail start 设置开机启动 chk ...

  7. 自定义ClassLoader加载加密的class文件

    package com.yd.wmsc.util; public class Test { public void say(){ System.out.println("Say Hello& ...

  8. 【ACM】孪生素数问题

    孪生素数问题 时间限制:3000 ms  |  内存限制:65535 KB 难度:3   描述 写一个程序,找出给出素数范围内的所有孪生素数的组数.一般来说,孪生素数就是指两个素数距离为2,近的不能再 ...

  9. 【ACM】取石子 - 博弈论

    取石子(一) 时间限制:3000 ms  |  内存限制:65535 KB 难度:2   描述 一天,TT在寝室闲着无聊,和同寝的人玩起了取石子游戏,而由于条件有限,他/她们是用旺仔小馒头当作石子.游 ...

  10. LeetCode 225 Implement Stack using Queues 用队列实现栈

    1.两个队列实现,始终保持一个队列为空即可 class MyStack { public: /** Initialize your data structure here. */ MyStack() ...