线性判别分析(Linear Discriminant Analysis, LDA)算法初识
LDA算法入门
一. LDA算法概述:
线性判别式分析(Linear Discriminant Analysis, LDA),也叫做Fisher线性判别(Fisher Linear Discriminant ,FLD),是模式识别的经典算法,它是在1996年由Belhumeur引入模式识别和人工智能领域的。性鉴别分析的基本思想是将高维的模式样本投影到最佳鉴别矢量空间,以达到抽取分类信息和压缩特征空间维数的效果,投影后保证模式样本在新的子空间有最大的类间距离和最小的类内距离,即模式在该空间中有最佳的可分离性。因此,它是一种有效的特征抽取方法。使用这种方法能够使投影后模式样本的类间散布矩阵最大,并且同时类内散布矩阵最小。就是说,它能够保证投影后模式样本在新的空间中有最小的类内距离和最大的类间距离,即模式在该空间中有最佳的可分离性。
二. LDA假设以及符号说明:
假设对于一个
空间有m个样本分别为x1,x2,……xm 即 每个x是一个n行的矩阵,其中
表示属于i类的样本个数,假设有一个有c个类,则
。
………………………………………………………………………… 类间离散度矩阵
………………………………………………………………………… 类内离散度矩阵
………………………………………………………………………… 属于i类的样本个数
…………………………………………………………………………… 第i个样本
…………………………………………………………………………… 所有样本的均值
…………………………………………………………………………… 类i的样本均值
三. 公式推导,算法形式化描述
根据符号说明可得类i的样本均值为:
…………………………………………………………………… (1)
同理我们也可以得到总体样本均值:
………………………………………………………………………… (2)
根据类间离散度矩阵和类内离散度矩阵定义,可以得到如下式子:
……………………………………………… (3)
…………………………………… (4)
当然还有另一种类间类内的离散度矩阵表达方式:

其中
是指i类样本的先验概率,即样本中属于i类的概率(
),把
代入第二组式子中,我们可以发现第一组式子只是比第二组式子都少乘了1/m,我们将在稍后进行讨论,其实对于乘不乘该1/m,对于算法本身并没有影响,现在我们分析一下算法的思想,
我们可以知道矩阵
的实际意义是一个协方差矩阵,这个矩阵所刻画的是该类与样本总体之间的关系,其中该矩阵对角线上的函数所代表的是该类相对样本总体的方差(即分散度),而非对角线上的元素所代表是该类样本总体均值的协方差(即该类和总体样本的相关联度或称冗余度),所以根据公式(3)可知(3)式即把所有样本中各个样本根据自己所属的类计算出样本与总体的协方差矩阵的总和,这从宏观上描述了所有类和总体之间的离散冗余程度。同理可以的得出(4)式中为分类内各个样本和所属类之间的协方差矩阵之和,它所刻画的是从总体来看类内各个样本与类之间(这里所刻画的类特性是由是类内各个样本的平均值矩阵构成)离散度,其实从中可以看出不管是类内的样本期望矩阵还是总体样本期望矩阵,它们都只是充当一个媒介作用,不管是类内还是类间离散度矩阵都是从宏观上刻画出类与类之间的样本的离散度和类内样本和样本之间的离散度。
LDA做为一个分类的算法,我们当然希望它所分的类之间耦合度低,类内的聚合度高,即类内离散度矩阵的中的数值要小,而类间离散度矩阵中的数值要大,这样的分类的效果才好。
这里我们引入Fisher鉴别准则表达式:
…………………………………………………………… (5)
其中
为任一n维列矢量。Fisher线性鉴别分析就是选取使得
达到最大值的矢量
作为投影方向,其物理意义就是投影后的样本具有最大的类间离散度和最小的类内离散度。
我们把公式(4)和公式(3)代入公式(5)得到:

我们可以设矩阵
其中
可以看成是一个空间,也就是说
是
构成的低维空间(超平面)的投影。
也可表示为
,而当样本为列向量时,
即表示
在
空间的几何距离的平方。所以可以推出fisher线性鉴别分析表达式的分子即为样本在投影
空间下的类间几何距离的平方和,同理也可推出分母为样本在投影
空间下的类内几何距离的平方差,所以分类问题就转化到找一个低维空间使得样本投影到该空间下时,投影下来的类间距离平方和与类内距离平方和之比最大,即最佳分类效果。
所以根据上述思想,即通过最优化下面的准则函数找到有一组最优鉴别矢量构成的投影矩阵
(这里我们也可以看出1/m可以通过分子分母约掉,所以前面所提到的第一组公式和第二组公式所表达的效果是一样的).
……………… (6)
可以证明,当
为非奇异(一般在实现LDA算法时,都会对样本做一次PCA算法的降维,消除样本的冗余度,从而保证
是非奇异阵,当然即使
为奇异阵也是可以解的,可以把
或
对角化,这里不做讨论,假设都是非奇异的情况)时,最佳投影矩阵
的列向量恰为下来广义特征方程
………………………………………………………………………… (7)
的d个最大的特征值所对应的特征向量(矩阵
的特征向量),且最优投影轴的个数d<=c-1.
根据(7)式可以推出
……………………………………………… (8)
又由于
下面给出验证:把(7)式代入(6)式可得:

四. 算法的物理意义和思考
4.1 用一个例子阐述LDA算法在空间上的意义
下面我们利用LDA进行一个分类的问题:假设一个产品有两个参数来衡量它是否合格,
我们假设两个参数分别为:
|
参数A |
参数B |
是否合格 |
|
2.95 |
6.63 |
合格 |
|
2.53 |
7.79 |
合格 |
|
3.57 |
5.65 |
合格 |
|
3.16 |
5.47 |
合格 |
|
2.58 |
4.46 |
不合格 |
|
2.16 |
6.22 |
不合格 |
|
3.27 |
3.52 |
不合格 |
实验数据来源:http://people.revoledu.com/kardi/tutorial/LDA/Numerical%20Example.html
所以我们可以根据上图表格把样本分为两类,一类是合格的,一类是不合格的,所以我们可以创建两个数据集类:
cls1_data =
2.9500 6.6300
2.5300 7.7900
3.5700 5.6500
3.1600 5.4700
cls2_data =
2.5800 4.4600
2.1600 6.2200
3.2700 3.5200
其中cls1_data为合格样本,cls2_data为不合格的样本,我们根据公式(1),(2)可以算出合格的样本的期望值,不合格类样本的合格的值,以及总样本期望:
E_cls1 =
3.0525 6.3850
E_cls2 =
2.6700 4.7333
E_all =
2.8886 5.6771
我们可以做出现在各个样本点的位置:

图一
其中蓝色‘*’的点代表不合格的样本,而红色实点代表合格的样本,天蓝色的倒三角是代表总期望,蓝色三角形代表不合格样本的期望,红色三角形代表合格样本的期望。从x,y轴的坐标方向上可以看出,合格和不合格样本区分度不佳。
我们在可以根据表达式(3),(4)可以计算出类间离散度矩阵和类内离散度矩阵:
Sb =
0.0358 0.1547
0.1547 0.6681
Sw =
0.5909 -1.3338
-1.3338 3.5596
我们可以根据公式(7),(8)算出
特征值以及对应的特征向量:
L =
0.0000 0
0 2.8837
对角线上为特征值,第一个特征值太小被计算机约为0了
与他对应的特征向量为
V =
-0.9742 -0.9230
0.2256 -0.3848
根据取最大特征值对应的特征向量:(-0.9230,-0.3848),该向量即为我们要求的子空间,我们可以把原来样本投影到该向量后 所得到新的空间(2维投影到1维,应该为一个数字)
new_cls1_data =
-5.2741
-5.3328
-5.4693
-5.0216
为合格样本投影后的样本值
new_cls2_data =
-4.0976
-4.3872
-4.3727
为不合格样本投影后的样本值,我们发现投影后,分类效果比较明显,类和类之间聚合度很高,我们再次作图以便更直观看分类效果

图二
蓝色的线为特征值较小所对应的特征向量,天蓝色的为特征值较大的特征向量,其中蓝色的圈点为不合格样本在该特征向量投影下来的位置,二红色的‘*’符号的合格样本投影后的数据集,从中个可以看出分类效果比较好(当然由于x,y轴单位的问题投影不那么直观)。
我们再利用所得到的特征向量,来对其他样本进行判断看看它所属的类型,我们取样本点
(2.81,5.46),
我们把它投影到特征向量后得到:result = -4.6947 所以它应该属于不合格样本。
4.2 LDA算法与PCA算法
在传统特征脸方法的基础上,研究者注意到特征值打的特征向量(即特征脸)并一定是分类性能最好的方向,而且对K-L变换而言,外在因素带来的图像的差异和人脸本身带来的差异是无法区分的,特征连在很大程度上反映了光照等的差异。研究表明,特征脸,特征脸方法随着光线,角度和人脸尺寸等因素的引入,识别率急剧下降,因此特征脸方法用于人脸识别还存在理论的缺陷。线性判别式分析提取的特征向量集,强调的是不同人脸的差异而不是人脸表情、照明条件等条件的变化,从而有助于提高识别效果。
线性判别式分析,又称为Fisher线性判别~(Linear discriminant analysis)(Fisher linear discriminant)
最大化类间均值,最小化类内方差
通过调整权重向量组件,可选择一个投影方向,最大化地类别分离性~

两个类的均值向量:

对样本进行投影时,使得类别最简单的分离,是投影的类别均值的分离~
最大化类间均值
其中约束
最小化类内方差
,其中
Fisher 判别准则:

等价于:
其中:

对权重W求微分,使得J(W)最大化,当:
化简之~

线性判别分析(Linear Discriminant Analysis, LDA)算法初识的更多相关文章
- 线性判别分析(Linear Discriminant Analysis, LDA)算法分析
原文来自:http://blog.csdn.net/xiazhaoqiang/article/details/6585537 LDA算法入门 一. LDA算法概述: 线性判别式分析(Lin ...
- Linear Discriminant Analysis Algorithm
线性判别分析算法. 逻辑回归是一种分类算法,传统上仅限于两类分类问题. 如果有两个以上的类,那么线性判别分析算法是首选的线性分类技术.LDA的表示非常直接.它包括数据的统计属性,为每个类计算.对于单个 ...
- 线性判别分析(Linear Discriminant Analysis,LDA)
一.LDA的基本思想 线性判别式分析(Linear Discriminant Analysis, LDA),也叫做Fisher线性判别(Fisher Linear Discriminant ,FLD) ...
- 机器学习: Linear Discriminant Analysis 线性判别分析
Linear discriminant analysis (LDA) 线性判别分析也是机器学习中常用的一种降维算法,与 PCA 相比, LDA 是属于supervised 的一种降维算法.PCA考虑的 ...
- Max-Mahalanobis Linear Discriminant Analysis Networks
目录 概 主要内容 Pang T, Du C, Zhu J, et al. Max-Mahalanobis Linear Discriminant Analysis Networks[C]. inte ...
- 线性判别分析(Linear Discriminant Analysis)转载
1. 问题 之前我们讨论的PCA.ICA也好,对样本数据来言,可以是没有类别标签y的.回想我们做回归时,如果特征太多,那么会产生不相关特征引入.过度拟合等问题.我们可以使用PCA来降维,但PCA没有将 ...
- 线性判别分析(Linear Discriminant Analysis)
1. 问题 之前我们讨论的PCA.ICA也好,对样本数据来言,可以是没有类别标签y的.回想我们做回归时,如果特征太多,那么会产生不相关特征引入.过度拟合等问题.我们可以使用PCA来降维,但PCA没有将 ...
- 高斯判别分析 Gaussian Discriminant Analysis
如果在我们的分类问题中,输入特征xx是连续型随机变量,高斯判别模型(Gaussian Discriminant Analysis,GDA)就可以派上用场了. 以二分类问题为例进行说明,模型建立如下: ...
- [ML] Linear Discriminant Analysis
虽然名字里有discriminat这个字,但却是生成模型,有点意思. 判别式 pk 生成式 阅读:生成方法 vs 判别方法 + 生成模型 vs 判别模型 举例: 判别式模型举例:要确定一个羊是山羊还是 ...
随机推荐
- [YNOI2017][bzoj4811][luogu3613] 由乃的OJ/睡觉困难综合症 [压位+树链剖分+线段树]
题面 BZOJ题面,比较不清晰 Luogu题面,写的比较清楚 思路 原题目 我们先看这道题的原题目NOI2014起床困难综合症 的确就是上树的带修改版本 那么我们先来解决这个原版的序列上单次询问 二进 ...
- [poj] 1375 Interval || 圆的切线&和直线的交点
原题 每组数据给出一些圆(障碍物)的圆心和半径,一个点和一条线段,求站在这个点,能开到的线段的部分的左端点和右端点.没有则输出"No View" 相当于求过该点的圆的两条切线,切线 ...
- hdu 5111 树上求交
hdu 5111 树上求交(树链剖分 + 主席树) 题意: 给出两棵树,大小分别为\(n1\),\(n2\), 树上的结点权值为\(weight_i\) 同一棵树上的结点权值各不相同,不同树上的结点权 ...
- Matlab 几种卷积的实现与比较(conv与filter,conv2与filter2)
Matlab 几种卷积的实现与比较(conv与filter,conv2与filter2) 最近在做控制算法实现的时候,对于其中参杂的各种差分.卷积很头疼,就在网上搜集了些资料,汇总于此,以做备 ...
- 手动破解的 Linux下的Maltab 2014b
人人网上一个很不错的东东,转发全文如下: 好久没有写日志了,今天更新一篇. 承蒙 @刘慎修(263525031 )修哥分享的各种激励,发布一发我自创的黑科技. Maltab 2014b 发布了,但是只 ...
- linux下搭建SVN服务器完全手册【转】
转自:http://blog.csdn.net/bullbat/article/details/9115559 系统环境 RHEL5.4最小化安装(关iptables,关selinux) ...
- C++11中的小细节--字符串的原始字面量
原始字面量很容易理解,即不进行转义的完整字符串. 最近看了看Python,其中讲到了原始字符串. Both string and bytes literals may optionally be pr ...
- C# Log4Net使用示例
using log4net; using log4net.Config; using System; using System.IO; namespace Three.Logging { /// &l ...
- python--easygui
1.msgbox import easygui as eg # msgbox # 一般使用三个参数,msg:内容,title:标题,ok_button:按钮内容 eg.msgbox(msg=" ...
- 如何让springboot中的某些html文件不经过thymeleaf模板解析?
这个thymeleaf有时有用,有时用不着. 但默认设置,所有的html都会经过它解析. 我的作法,是新建public,在resource里,所有css,js所放里面.(当然,static下也是OK的 ...