飞翔

题意 : 给定一个区间长度 n ,接下来给出 m 个子区间,要求最少选出多少个区间才能使得 1~n 这个区间被所选的所有子区间覆盖

分析:

首先是动态规划,dp[i]表示把最大值从1位置搞到第i个小装置结尾最少需要多少个小装置,这样的话,从小到大遍历所有装置,每次查询当前装置之前的装置区间和当前装置相交的装置,更新dp就可以了。

那么问题就来了,装置有m个,这样O(m^2)的算法绝壁TLE。

用线段树来维护区间最小dp值信息,每个点维护ll到rr范围内的dp最小是多少。没算完一个新的小装置只需把它的dp值插到树上就行了。

然后TLE了,这里有个小贪心,每次更新不需要更新区间信息,因为对每个区间,r点之前的信息对更新之后的装置dp没有贡献,因为要努力使最大值向右移,因此单点更新即可。

AC代码:

#include <cstdio>
#include <algorithm>
#include <string.h>
using namespace std;
#define lson l , m , rt << 1
#define rson m + 1 , r , rt << 1 | 1
const int maxn = 5e4 + ;
const int INF = 0x3f3f3f3f;
int minx[maxn<<];
int dp[maxn];
int L[], R[]; void PushUP(int rt) { minx[rt] = min(minx[rt<<], minx[rt<<|]); }
void build(int l,int r,int rt) {
if (l == r) {
minx[rt] = INF;
return ;
}
int m = (l+r)>>;
build(lson);
build(rson);
PushUP(rt);
}
void update(int p,int sc,int l,int r,int rt) {//单点更新,参数(更新点,更新值,总区间左端点,总区间右端点,根节点编号)
if (l == r) {
minx[rt] = sc;
return ;
}
int m =(l+r)>>;
if (p <= m) update(p , sc , lson);
else update(p , sc , rson);
PushUP(rt);
}
int query(int L,int R,int l,int r,int rt) {//查询最大值的写法、最小值同理、求和区间写法在下面
if (L <= l && r <= R)
return minx[rt]; int m = (l + r) >> ;
int ret = INF;
if (L <= m) ret = min(ret , query(L , R , lson));
if (R > m) ret = min(ret , query(L , R , rson));
return ret;
} int main(void)
{
int m, n;
scanf("%d %d", &n, &m);
for(int i=; i<=m; i++)
scanf("%d %d", &L[i], &R[i]);
build(, n, );
for(int i=; i<=n; i++)
dp[i] = INF;
dp[] = ;
update(, , , n, );
for(int i=; i<=m; i++){
int val = query(L[i], R[i], , n, ) + ;
if(val < dp[R[i]]){
//printf("%d %d\n", L[i], R[i]);
update(R[i], val, , n, );
dp[R[i]] = val;
}
}
printf("%d\n", dp[n]); return ;
}

POJ1769(线段树+DP)的更多相关文章

  1. Tsinsen A1219. 采矿(陈许旻) (树链剖分,线段树 + DP)

    [题目链接] http://www.tsinsen.com/A1219 [题意] 给定一棵树,a[u][i]代表u结点分配i人的收益,可以随时改变a[u],查询(u,v)代表在u子树的所有节点,在u- ...

  2. HDU 3016 Man Down (线段树+dp)

    HDU 3016 Man Down (线段树+dp) Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Ja ...

  3. lightoj1085 线段树+dp

    //Accepted 7552 KB 844 ms //dp[i]=sum(dp[j])+1 j<i && a[j]<a[i] //可以用线段树求所用小于a[i]的dp[j ...

  4. [CF 474E] Pillars (线段树+dp)

    题目链接:http://codeforces.com/contest/474/problem/F 意思是给你两个数n和d,下面给你n座山的高度. 一个人任意选择一座山作为起始点,向右跳,但是只能跳到高 ...

  5. HDU-3872 Dragon Ball 线段树+DP

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3872 题意:有n个龙珠按顺序放在一列,每个龙珠有一个type和一个权值,要求你把这n个龙珠分成k个段, ...

  6. HDU4521+线段树+dp

    题意:在一个序列中找出最长的某个序列.找出的序列满足题中的条件. 关键:对于 第 i 个位置上的数,要知道与之相隔至少d的位置上的数的大小.可以利用线段树进行统计,查询.更新的时候利用dp的思想. / ...

  7. Codeforces Round #343 (Div. 2) D - Babaei and Birthday Cake 线段树+DP

    题意:做蛋糕,给出N个半径,和高的圆柱,要求后面的体积比前面大的可以堆在前一个的上面,求最大的体积和. 思路:首先离散化蛋糕体积,以蛋糕数量建树建树,每个节点维护最大值,也就是假如节点i放在最上层情况 ...

  8. Special Subsequence(离散化线段树+dp)

    Special Subsequence Time Limit: 5 Seconds      Memory Limit: 32768 KB There a sequence S with n inte ...

  9. hdu 4117 GRE Words (ac自动机 线段树 dp)

    参考:http://blog.csdn.net/no__stop/article/details/12287843 此题利用了ac自动机fail树的性质,fail指针建立为树,表示父节点是孩子节点的后 ...

随机推荐

  1. linux动态内核模块编程-3

    将一组与模块相关的命令加载进内核 完成功能类似2,打印proc下的相关信息.但是不用重新编译内核,节省时间,更为灵活 内核模块介绍 模块是在内核空间运行的程序,实际上是一种目标文件,不能单独运行但其代 ...

  2. 【oracle】首次启动SQL Developer配置java.exe出错(Could not find jvm.cfg! )

    1.环境 win7/8/8.1  x64,Oracle 11g r2,jdk7 x64 2.问题 第一次启动Oracle SQL Developer的时候会让我们填写Java.exe的路径,我在jdk ...

  3. Python 黑客 004 用Python构建一个SSH僵尸网络 01 简介

    用Python构建一个SSH僵尸网络 01 简介 一. 构建一个SSH僵尸网络的流程图: Created with Raphaël 2.1.0手动操作,实现通过SSH连接目标服务器(手动)用 Pexp ...

  4. Luogu 2831 [NOIP2016] 愤怒的小鸟

    第一眼看成爆搜的状压dp,膜Chester大神犇. 考虑到三个不在同一直线上的点可以确定一条抛物线,而固定点$(0, 0)$和不在同一直线上这两个条件是题目中给定的,所以我们只要枚举两个点然后暴力算抛 ...

  5. 有趣的setTimeout

    今天在回顾JavaScript进阶用法的时候,发现一个有趣的问题,话不多说,先上代码: for(var j=0;j<10;j++){ setTimeout(function(){console. ...

  6. str() 和repr()的区别

    >>> a='bbc' >>> a'bbc'>>> print abbc str()一般是将数值转成字符串:repr()是将一个对象转成字符串显示 ...

  7. [学习笔记]scanf弊端以及解决方案

    #include<stdio.h> #include<stdlib.h> #include<unistd.h> int main(void) { ]; //mems ...

  8. [转]delphi xe6 android屏幕操持常亮

    1) setting the Project Options, Uses Permissions, Wake lock = True 2) Adding Android.JNI.PowerManage ...

  9. win10系统遇到的问题解决

      1.win10 计算器提示:需要新应用打开此calculator 运行calc,会出现需要新应用打开此Calculator,打开应用商店,找到计算器,仍然可以被使用,我怀疑是我自己在清理PC的注册 ...

  10. Cookies的两种存取方式

    我们在使用webview开发时,少不了和cookie打交道,在网页端我这使用的是asp.net开发的,安卓下的cookie和windows平台下还是有些不同的,后来看了看,原来有两种cookie的存取 ...