以前做过几题。。好久过去全忘了。

看来是要记一下。。。

【prufer】

n个点的无根树(点都是标号的,distinct)对应一个 长度n-2的数列

所以 n个点的无根树有n^(n-2)种

树 转 prufer数列:  每次删除编号最小的叶子节点,将与其相连的那个点 加入 prufer数列  直到树中只剩两个点,就结束

prufer数列 转 树:  首先是有个1到n的集合G,每次将prufer数列当前的第一项 和 当前G中 不在当前prufer里有的 最小的 元素x 连边。 接着删除当前prufer中的第一项 ,并在G中删除x。。直到prufer只剩两项,两者连边 结束

对树中的i号节点 在对应的prufer数列中 出现di-1次  (di为i号节点的度)

对于i号点度数为d[i]的 无根树 树的种数有 (n - 2) ! / ( (d1 - 1)! (d2 - 1)! ……(dn - 1)! )

1211: [HNOI2004]树的计数

所以 这是道基础题 上代码吧

 #include <bits/stdc++.h>
using namespace std;
int n,d[],a[],b[],c[],t,k; long long x;
void hh(int x){
for (int i=;i<=t;++i){
while (!(x%a[i])) x/=a[i],++b[i];
}
}
int main(){
scanf("%d",&n);
for (int i=;i<=n;++i) {
scanf("%d",&d[i]);
if ((d[i]<&&n!=)||d[i]>=n) {printf("0\n"); return ;}
x+=d[i];
}
if (x!=(n-)*) {printf("0\n"); return ;}
if (n<) {printf("1\n");return ;}
sort(d+,d++n);
for (int i=;i<=n;++i) --d[i];
for (int i=;i<=;++i){
k=;
for (int j=;j<=i-;++j)
if (!(i%j)){k=;break;}
if (k) a[++t]=i;
}
k=; while (!d[k]) ++k; while (d[k]==) ++k;
for (int i=;i<=n;++i){
hh(i);
while (d[k]==i){
for (int j=;j<=t;++j) c[j]-=b[j]; ++k;
}
if (n-==i) for (int j=;j<=t;++j) c[j]+=b[j];
}
x=;
for (int i=;i<=t;++i)
for (int j=;j<=c[i];++j) x*=(long long)a[i];
printf("%lld\n",x);
return ;
}

Lancer

prufer BZOJ1211: [HNOI2004]树的计数的更多相关文章

  1. bzoj1211: [HNOI2004]树的计数 prufer编码

    题目链接 bzoj1211: [HNOI2004]树的计数 题解 prufer序 可重排列计数 代码 #include<bits/stdc++.h> using namespace std ...

  2. bzoj1211: [HNOI2004]树的计数(prufer序列+组合数学)

    1211: [HNOI2004]树的计数 题目:传送门 题解: 今天刚学prufer序列,先打几道简单题 首先我们知道prufer序列和一颗无根树是一一对应的,那么对于任意一个节点,假设这个节点的度数 ...

  3. BZOJ1211: [HNOI2004]树的计数

    1211: [HNOI2004]树的计数 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1245  Solved: 383[Submit][Statu ...

  4. bzoj1211: prufer序列 | [HNOI2004]树的计数

    题目大意: 告诉你树上每个节点的度数,让你构建出这样一棵树,问能够构建出树的种树 这里注意数量为0的情况,就是 当 n=1时,节点度数>0 n>1时,所有节点度数相加-n!=n-2 可以通 ...

  5. 【prufer编码】BZOJ1211 [HNOI2004]树的计数

    Description 给定一棵树每个节点度的限制为di,求有多少符合限制不同的树. Solution 发现prufer码和度数必然的联系 prufer码一个点出现次数为它的度数-1 我们依然可以把树 ...

  6. [BZOJ1211][HNOI2004]树的计数(Prufer序列)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1211 分析: 关于无根树的组合数学问题肯定想到Prufer序列,类似bzoj1005那 ...

  7. BZOJ1211:[HNOI2004]树的计数(组合数学,Prufer)

    Description 一个有n个结点的树,设它的结点分别为v1, v2, …, vn,已知第i个结点vi的度数为di,问满足这样的条件的不同的树有多少棵.给定n,d1, d2, …, dn,编程需要 ...

  8. bzoj1211: [HNOI2004]树的计数 prufer序列裸题

    一个有n个结点的树,设它的结点分别为v1, v2, …, vn,已知第i个结点vi的度数为di,问满足这样的条件的不同的树有多少棵.给定n,d1, d2, …, dn,编程需要输出满足d(vi)=di ...

  9. BZOJ1211: [HNOI2004]树的计数(prufer序列)

    Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2987  Solved: 1111[Submit][Status][Discuss] Descript ...

随机推荐

  1. Python一些基础练习题

    可变的数据类型:list, dict, set(可修改其中的元素) 不可变的数据类型:str, tuple 重点:str, list, dict (1).推导式练习 # 利用列表推导式: 找出100以 ...

  2. 爬虫入门【3】BeautifulSoup4用法简介

    快速开始使用BeautifulSoup 首先创建一个我们需要解析的html文档,这里采用官方文档里面的内容: html_doc = """ <html>< ...

  3. EasyNVR无插件直播服务器软件使用详情功能-通道配置Excel

    背景需求 使用EasyNVR的用户都有知道,由于EasyNVR是将设备与EasyNVR的通道进行绑定的,因此EasyNVR是通过手动的通道配置来进行设备接入的,这样可以做到将设备的和通道对应的接入.但 ...

  4. 九度OJ 1341:艾薇儿的演唱会 (最短路)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:528 解决:241 题目描述: 艾薇儿今天来到了中国,她计划两天后在哈尔滨举行一场个人的演唱会.由于出现了紧急情况,演唱会的举办方要求艾薇儿 ...

  5. OC常用函数及变量

    1.OC常用的的函数及变量 (1)算术函数 [算术函数] 函数名 说明 int rand() 随机数生成.(例)srand(time(nil)); //随机数初期化int val = rand()P; ...

  6. Zookeeper Curator 事件监听 - 秒懂

    目录 写在前面 1.1. Curator 事件监听 1.1.1. Watcher 标准的事件处理器 1.1.2. NodeCache 节点缓存的监听 1.1.3. PathChildrenCache ...

  7. SNMP 监控方式的配置

    由于某些设备并不能安装 Agent,或者不方便安装 Agent 等因素,将采用 SNMP 方式进行监控 1.Linux 配置 SNMP [root@crazy-acong ~]# yum -y ins ...

  8. ShowModal 代码分析

    下面为Delphi中,方法TCustomForm.ShowModal的代码,通过分析以下代码,可以了解ShowModal到底是怎么一回事! 1 2 3 4 5 6 7 8 9 10 11 12 13 ...

  9. PAT 1055. 集体照 (25)

    拍集体照时队形很重要,这里对给定的N个人K排的队形设计排队规则如下: 每排人数为N/K(向下取整),多出来的人全部站在最后一排: 后排所有人的个子都不比前排任何人矮: 每排中最高者站中间(中间位置为m ...

  10. CENTOS7 修改网卡名称为eth[012...],格式

    具体操作是修改/etc/default/grub文件 在GRUB_CMDLINE_LINUX一行中添加net.ifnames=0 biosdevname=0 保存文件后然后运行 grub2-mkcon ...