11 tensorflow在tf.while_loop循环(非一般循环)中使用操纵变量该怎么做
代码(操纵全局变量)
xiaojie=1
i=tf.constant(0,dtype=tf.int32)
batch_len=tf.constant(10,dtype=tf.int32)
loop_cond = lambda a,b: tf.less(a,batch_len)
#yy=tf.Print(batch_len,[batch_len],"batch_len:")
yy=tf.constant(0)
loop_vars=[i,yy]
def _recurrence(i,yy):
c=tf.constant(2,dtype=tf.int32)
x=tf.multiply(i,c)
global xiaojie
xiaojie=xiaojie+1
print_info=tf.Print(x,[x],"x:")
yy=yy+print_info
i=tf.add(i,1)
# print (xiaojie)
return i,yy
i,yy=tf.while_loop(loop_cond,_recurrence,loop_vars,parallel_iterations=1)#可以批处理
sess = tf.Session()
print (sess.run(i))
print (xiaojie)
输出的是10和2。
也就是xiaojie只被修改了一次。
这个时候,在_recurrence循环体中添加语句
print (xiaojie)
会输出2。而且只输出一次。具体为什么,最后总结的时候再解释。
代码(操纵类成员变量)class RNN_Model():
def __init__(self):
self.xiaojie=1
def test_RNN(self):
i=tf.constant(0,dtype=tf.int32)
batch_len=tf.constant(10,dtype=tf.int32)
loop_cond = lambda a,b: tf.less(a,batch_len)
#yy=tf.Print(batch_len,[batch_len],"batch_len:")
yy=tf.constant(0)
loop_vars=[i,yy]
def _recurrence(i,yy):
c=tf.constant(2,dtype=tf.int32)
x=tf.multiply(i,c)
self.xiaojie=self.xiaojie+1
print_info=tf.Print(x,[x],"x:")
yy=yy+print_info
i=tf.add(i,1)
print ("_recurrence:",self.xiaojie)
return i,yy
i,yy=tf.while_loop(loop_cond,_recurrence,loop_vars,parallel_iterations=1)#可以批处理
sess = tf.Session()
sess.run(yy)
print (self.xiaojie)
if __name__ == "__main__":
model = RNN_Model()#构建树,并且构建词典
model.test_RNN()
输出是:
_recurrence: 2
10
2
tf.while_loop操纵全局变量和类成员变量总结
为什么_recurrence中定义的print操作只执行一次呢,这是因为_recurrence中的print相当于一种对代码的定义,直接在定义的过程中就执行了。所以,可以看到输出是在sess.run之前的。但是,定义的其它操作就是数据流图中的操作,需要在sess.run中执行。
就必须在sess.run中执行。但是,全局变量xiaojie也好,还是类成员变量xiaojie也好。其都不是图中的内容。因此,tf.while_loop执行的是tensorflow计算图中的循环,对于不是在计算图中的,就不会参与循环。注意:而且必须是与loop_vars中指定的变量存在数据依赖关系的tensor才可以!此外,即使是依赖关系,也必须是_recurrence循环体中return出的变量,才会真正的变化。比如,见下面的self.L。总之,想操纵变量,就要传入loop_vars!
如果对一个变量没有修改,就可以直接在循环中以操纵类成员变量或者全局变量的方式只读。
self.L与loop_vars中变量有依赖关系,但是并没有真正被修改。
#IIII通过计算将非叶子节点的词向量也放入nodes_tensor中。
iiii=tf.constant(0,dtype=tf.int32)
loop____cond = lambda a,b,c,d,e: tf.less(a,self.sentence_length-1)#iiii的范围是0到sl-2。注意,不包括sl-1。这是因为只需要计算sentence_length-1次,就能构建出一颗树
loop____vars=[iiii,columnLinesOfL,node_tensors_cost_tensor,nodes_tensor,tfPrint]
def ____recurrence(iiii,columnLinesOfL,node_tensors_cost_tensor,nodes_tensor,tfPrint):#循环的目的是实现Greedy算法
###
#Greedy的主要目标就是确立树结构。
###
c1 = self.L[:,0:columnLinesOfL-1]#这段代码是从RvNN的matlab的源码中复制过来的,但是Matlab的下标是从1开始,并且Matlab中1:2就是1和2,而python中1:2表示的是1,不包括2,所以,有很大的不同。
c2 = self.L[:,1:columnLinesOfL]
c=tf.concat([c1,c2],axis=0)
p=tf.tanh(tf.matmul(self.W1,c)+tf.tile(self.b1,[1,columnLinesOfL-1]))
p_normalization=self.normalization(p)
y=tf.tanh(tf.matmul(self.U,p_normalization)+tf.tile(self.bs,[1,columnLinesOfL-1]))#根据Matlab中的源码来的,即重构后,也有一个激活的过程。
#将Y矩阵拆分成上下部分之后,再分别进行标准化。
columnlines_y=columnLinesOfL-1
(y1,y2)=self.split_by_row(y,columnlines_y)
y1_normalization=self.normalization(y1)
y2_normalization=self.normalization(y2)
#论文中提出一种计算重构误差时要考虑的权重信息。具体见论文,这里暂时不实现。
#这个权重是可以修改的。
alpha_cat=1
bcat=1
#计算重构误差矩阵
## constant1=tf.constant([[1.0,2.0,3.0],[4.0,5.0,6.0],[7.0,8.0,9.0]])
## constant2=tf.constant([[1.0,2.0,3.0],[1.0,4.0,2.0],[1.0,6.0,1.0]])
## constructionErrorMatrix=self.constructionError(constant1,constant2,alpha_cat,bcat)
y1c1=tf.subtract(y1_normalization,c1)
y2c2=tf.subtract(y2_normalization,c2)
constructionErrorMatrix=self.constructionError(y1c1,y2c2,alpha_cat,bcat)
################################################################################
print_info=tf.Print(iiii,[iiii],"\niiii:")#专门为了调试用,输出相关信息。
tfPrint=print_info+tfPrint
print_info=tf.Print(columnLinesOfL,[columnLinesOfL],"\nbefore modify. columnLinesOfL:")#专门为了调试用,输出相关信息。
tfPrint=print_info+tfPrint
print_info=tf.Print(constructionErrorMatrix,[constructionErrorMatrix],"\nbefore modify. constructionErrorMatrix:",summarize=100)#专门为了调试用,输出相关信息。
tfPrint=tf.to_int32(print_info[0])+tfPrint#一种不断输出tf.Print的方式,注意tf.Print的返回值。
################################################################################
J_minpos=tf.to_int32(tf.argmin(constructionErrorMatrix))#如果不转换的话,下面调用delete_one_column中,会调用tf.slice,之后tf.slice的参数中的类型必须是一样的。
J_min=constructionErrorMatrix[J_minpos]
#一共要进行sl-1次循环。因为是从sl个叶子节点,两两结合sl-1次,才能形成一颗完整的树,而且是采用Greedy的方式。
#所以,需要为下次循环做准备。
#第一步,从该sentence的词向量矩阵中删除第J_minpos+1列,因为第J_minpos和第J_minpos+1列对应的单词要合并为一个新的节点,这里就是修改L
################################################################################
print_info=tf.Print(self.L,[self.L[0]],"\nbefore modify. L row 0:",summarize=100)#专门为了调试用,输出相关信息。
tfPrint=tf.to_int32(print_info[0][0])+tfPrint
print_info=tf.Print(self.L,[tf.shape(self.L)],"\nbefore modify. L shape:")#专门为了调试用,输出相关信息。
tfPrint=tf.to_int32(print_info[0][0])+tfPrint
################################################################################
deleteColumnIndex=J_minpos+1
self.L=self.delete_one_column(self.L,deleteColumnIndex,self.numlinesOfL,columnLinesOfL)
columnLinesOfL=tf.subtract(columnLinesOfL,1) #列数减去1.
################################################################################
print_info=tf.Print(deleteColumnIndex,[deleteColumnIndex],"\nbefore modify. deleteColumnIndex:")#专门为了调试用,输出相关信息。
tfPrint=print_info+tfPrint
print_info=tf.Print(self.L,[self.L[0]],"\nafter modify. L row 0:",summarize=100)#专门为了调试用,输出相关信息。
tfPrint=tf.to_int32(print_info[0][0])+tfPrint print_info=tf.Print(self.L,[tf.shape(self.L)],"\nafter modify. L shape:")#专门为了调试用,输出相关信息。
tfPrint=tf.to_int32(print_info[0][0])+tfPrint
print_info=tf.Print(columnLinesOfL,[columnLinesOfL],"\nafter modify. columnLinesOfL:")#专门为了调试用,输出相关信息。
tfPrint=print_info+tfPrint
################################################################################ #第二步,将新的词向量赋值给第J_minpos列
columnTensor=p_normalization[:,J_minpos]
new_column_tensor=tf.expand_dims(columnTensor,1)
self.L=self.modify_one_column(self.L,new_column_tensor,J_minpos,self.numlinesOfL,columnLinesOfL)
#第三步,同时将新的非叶子节点的词向量存入nodes_tensor
modified_index_tensor=tf.to_int32(tf.add(iiii,self.sentence_length))
nodes_tensor=self.modify_one_column(nodes_tensor,new_column_tensor,modified_index_tensor,self.numlines_tensor,self.numcolunms_tensor)
#第四步:记录合并节点的最小损失,存入node_tensors_cost_tensor
J_min_tensor=tf.expand_dims(tf.expand_dims(J_min,0),1)
node_tensors_cost_tensor=self.modify_one_column(node_tensors_cost_tensor,J_min_tensor,iiii,self.numlines_tensor2,self.numcolunms_tensor2)
####进入下一次循环
iiii=tf.add(iiii,1)
print_info=tf.Print(J_minpos,[J_minpos,J_minpos+1],"node:")#专门为了调试用,输出相关信息。
tfPrint=tfPrint+print_info
# columnLinesOfL=tf.subtract(columnLinesOfL,1) #在上面的循环体中已经执行了,没有必要再执行。
return iiii,columnLinesOfL,node_tensors_cost_tensor,nodes_tensor,tfPrint
iiii,columnLinesOfL,node_tensors_cost_tensor,nodes_tensor,tfPrint=tf.while_loop(loop____cond,____recurrence,loop____vars,parallel_iterations=1)
pass
上述代码是Greedy算法,递归构建神经网络树结构。
但是程序出错了,后来不断的调试,才发现self.L虽然跟循环loop____vars中的变量有依赖关系,也就是在tf.while_loop进行循环的时候,也可以输出它的值。
但是,它每一次都无法真正意义上对self.L进行修改。会发现,每一次循环结束之后,进入下一次循环时,self.L仍然没有变化。
执行结果如下:
before modify. columnLinesOfL:[31]
iiii:[0] after modify. columnLinesOfL:[30] before modify. L shape:[300 31] before modify. L row 0:[0.126693 -0.013654 -0.166731 -0.13703 -0.261395 0.11459 0.016001 0.016001 0.144603 0.05588 0.171787 0.016001 1.064545 0.144603 0.130615 -0.13703 -0.261395 1.064545 -0.261395 0.144603 0.036626 1.064545 0.188871 0.201198 0.05588 0.203795 0.201198 0.03536 0.089345 0.083778 0.103635]
node:[0][1] before modify. constructionErrorMatrix:[3.0431733686706206 11.391056715427794 19.652819956115856 13.713453313903868 11.625973829805879 12.827533320819564 9.7513513723204746 13.009151292890811 13.896089243289065 10.649829109971648 9.45239374745086 15.704486086921641 18.274065790781862 12.447866299915024 15.302996103637689 13.713453313903868 14.295549844738751 13.779406175789358 11.625212314259059 16.340507223201449 19.095964364689717 15.10149194936319 11.989443162329437 13.436654650354058 11.120373311110505 12.39345317975002 13.568052800712424 10.998430341124633 8.3223909323599869 6.8896857405641851] after modify. L shape:[300 30] after modify. L row 0:[0.126693 -0.166731 -0.13703 -0.261395 0.11459 0.016001 0.016001 0.144603 0.05588 0.171787 0.016001 1.064545 0.144603 0.130615 -0.13703 -0.261395 1.064545 -0.261395 0.144603 0.036626 1.064545 0.188871 0.201198 0.05588 0.203795 0.201198 0.03536 0.089345 0.083778 0.103635] before modify. deleteColumnIndex:[1] before modify. columnLinesOfL:[30] iiii:[1] before modify. L shape:[300 31] after modify. columnLinesOfL:[29] before modify. L row 0:[0.126693 -0.013654 -0.166731 -0.13703 -0.261395 0.11459 0.016001 0.016001 0.144603 0.05588 0.171787 0.016001 1.064545 0.144603 0.130615 -0.13703 -0.261395 1.064545 -0.261395 0.144603 0.036626 1.064545 0.188871 0.201198 0.05588 0.203795 0.201198 0.03536 0.089345 0.083778 0.103635] before modify. deleteColumnIndex:[1]
node:[0][1] before modify. constructionErrorMatrix:[3.0431733686706206 11.391056715427794 19.652819956115856 13.713453313903868 11.625973829805879 12.827533320819564 9.7513513723204746 13.009151292890811 13.896089243289065 10.649829109971648 9.45239374745086 15.704486086921641 18.274065790781862 12.447866299915024 15.302996103637689 13.713453313903868 14.295549844738751 13.779406175789358 11.625212314259059 16.340507223201449 19.095964364689717 15.10149194936319 11.989443162329437 13.436654650354058 11.120373311110505 12.39345317975002 13.568052800712424 10.998430341124633 8.3223909323599869] after modify. L shape:[300 29] after modify. L row 0:[0.126693 -0.166731 -0.13703 -0.261395 0.11459 0.016001 0.016001 0.144603 0.05588 0.171787 0.016001 1.064545 0.144603 0.130615 -0.13703 -0.261395 1.064545 -0.261395 0.144603 0.036626 1.064545 0.188871 0.201198 0.05588 0.203795 0.201198 0.03536 0.089345 0.083778] before modify. columnLinesOfL:[29] iiii:[2]
后面那个after modify时L shape为[300 29]的原因是:执行
self.L=self.modify_one_column(self.L,new_column_tensor,J_minpos,self.numlinesOfL,columnLinesOfL)
时,columnLinesOfL是循环loop____vars中的变量,因此会随着每次循环发生变化,我写的modify_one_column见我的博文“修改tensor张量矩阵的某一列”。它决定了
修改后tensor的维度。
但是,无论如何,每一次循环,都是
before modify. L shape:[300 31]
说明self.L在循环体中虽然被修改了。但是下次循环又会被重置为初始值。
11 tensorflow在tf.while_loop循环(非一般循环)中使用操纵变量该怎么做的更多相关文章
- tf.while_loop
tf.while_loop(cond, body, loop_vars, shape_invariants=None, parallel_iterations=10, back_prop=True, ...
- TensorFlow之tf.nn.dropout():防止模型训练过程中的过拟合问题
一:适用范围: tf.nn.dropout是TensorFlow里面为了防止或减轻过拟合而使用的函数,它一般用在全连接层 二:原理: dropout就是在不同的训练过程中随机扔掉一部分神经元.也就是让 ...
- Tensorflow函数——tf.variable_scope()
Tensorflow函数——tf.variable_scope()详解 https://blog.csdn.net/yuan0061/article/details/80576703 2018年06月 ...
- TensorFlow笔记-02-Windows下搭建TensorFlow环境(win版非虚拟机)
TensorFlow笔记-02-Windows下搭建TensorFlow环境(win版非虚拟机) 本篇介绍的是在windows系统下,使用 Anaconda+PyCharm,不使用虚拟机,也不使用 L ...
- 【TensorFlow】tf.nn.conv2d是怎样实现卷积的?
tf.nn.conv2d是TensorFlow里面实现卷积的函数,参考文档对它的介绍并不是很详细,实际上这是搭建卷积神经网络比较核心的一个方法,非常重要 tf.nn.conv2d(input, fil ...
- TensorFlow2.0(11):tf.keras建模三部曲
.caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px so ...
- [Tensorflow] 使用 tf.train.Checkpoint() 保存 / 加载 keras subclassed model
在 subclassed_model.py 中,通过对 tf.keras.Model 进行子类化,设计了两个自定义模型. import tensorflow as tf tf.enable_eager ...
- tensorflow队列tf.FIFOQueue | enqueue | enqueue_many | dequeue | dequeue_many
关于队列的相关知识,盗用一张https://blog.csdn.net/HowardWood/article/details/79406891的动态图 import tensorflow as tf ...
- 【Tensorflow】tf.nn.atrous_conv2d如何实现空洞卷积?膨胀卷积
介绍关于空洞卷积的理论可以查看以下链接,这里我们不详细讲理论: 1.Long J, Shelhamer E, Darrell T, et al. Fully convolutional network ...
随机推荐
- Cygwin安装配置
1.下载安装Cygwin 我们可以到Cygwin的官方网站下载Cygwin的安装程序,地址是: http://www.cygwin.com/ 或者直接使用下载连接来下载安装程序,下载连接是: ht ...
- Linux的shell script
Linux的shell script //编辑shell: vi a.sh //子进程运行shell sh a.sh //主线程运行shell source a.sh 相关例子: #!/bin/bas ...
- Android侧滑菜单和轮播图之滑动冲突
接手一个项目,有一个问题需要修改:轮播图不能手动滑动,手动滑动轮播图只会触发侧滑菜单. 猜测:viewpager控件(轮播图)的触摸事件被SlidingMenu控件(侧滑菜单,非第三方项目,乃是上个开 ...
- android GridLayout布局
android4.0版本后新增了一个GridLayout,它使用虚细线将布局划分为行.列和单元格,也支持一个控件在行.列上都有交错排列,其实用方法和LinearLayout,Relativelayou ...
- Android Kotlin开发之使用Butterknife注意要点
使用kotlin-kapt插件 依赖由java的annotationProcessor改为kapt 在使用控件绑定使用时,网上搜使用方法,不知道被哪个家伙带坑里了. //错误用法 @BindView( ...
- 请编写一个C函数,将一个字符串逆序
目前有两种思路,一个是申请一片辅助空间,然后将原字符串逆向拷贝到辅助空间,然后输出:另一种是原地逆序,不需要额外的辅助空间,方法就是字符串首尾交换. #include <stdio.h> ...
- [笔记] Python字典
好记忆不如烂笔头: #__author:Mifen #date: 2018/11/28 #不可变类型:整型,字符串,浮点型(不等于小数,但包括小数),元组(只读,不可修改) #可变类型:列表,字典(键 ...
- OOAD之面向对象设计原则
学习这个设计模式 真的觉得很抽象,只有自己多多的领会! 在很多时候,很多的知识都会觉得讲起来是很矛盾的. 本章目标 1 掌握内聚度和耦合度的概念 2 掌握面向对象设计原则 (一)如何衡量软件设计的质 ...
- lucene源码分析(8)MergeScheduler
1.使用IndexWriter.java mergeScheduler.merge(this, MergeTrigger.EXPLICIT, newMergesFound); 2.定义MergeSch ...
- linux下mysql安装报错及修改密码登录等等
1:下载 [root@localhost soft]# wget https://cdn.mysql.com//Downloads/MySQL-5.7/mysql-5.7.19-linux-glibc ...