【luoguP2371】 [国家集训队]墨墨的等式
考虑将所有的\(a_1x_1+a_2x_2+……+a_nx_n=B\)对\(a_1\)取模,那么所有可达到的B就分为了\(0\)~\(a_1-1\)类
如果对\(a_1\)取模为\(k\)的一类\(B\)中最小的\(B\)为\(dis[k]\),那么\(dis[k]+a_1,dis[k]+a_1*2,……\)都是可以取到的,
所以对于每一类求最短路,最后统计答案就行了
#include<iostream>
#include<cstring>
#include<cstdio>
#define int long long
using namespace std;
const int N=15;
const int M=500010;
const int INF=0x3f3f3f3f;
int n,a[N],Bmin,Bmax,am=INF;
int dis[M],que[5000010],head,tail;
bool inque[M];
signed main()
{
scanf("%lld%lld%lld",&n,&Bmin,&Bmax);
for(int i=1;i<=n;++i)
scanf("%lld",&a[i]),am=min(am,a[i]);
memset(dis,0x3f,sizeof(dis));
dis[0]=0;
que[++tail]=0;
while(head<tail){
int u=que[++head];
inque[u]=0;
for(int i=1;i<=n;++i){
int v=(u+a[i])%am;
if(dis[v]>dis[u]+a[i]){
dis[v]=dis[u]+a[i];
if(!inque[v]){
que[++tail]=v;
inque[v]=1;
}
}
}
}
int ans=0;
for(int i=0;i<am;++i)
if(dis[i]<=Bmax){
ans+=(Bmax-dis[i])/am+1;
if(dis[i]<Bmin)
ans-=(Bmin-1-dis[i])/am+1;
}
printf("%lld\n",ans);
return 0;
}
【luoguP2371】 [国家集训队]墨墨的等式的更多相关文章
- 洛谷P2371 [国家集训队]墨墨的等式
P2371 [国家集训队]墨墨的等式 题目描述 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+-+anxn=Ba_1x_1+a_2y_2+-+a_nx_n=Ba1x1+a2y2+-+a ...
- 【同余最短路】【例题集合】洛谷P3403 跳楼机/P2371 墨墨的等式
接触到的新内容,[同余最短路]. 代码很好写,但思路不好理解. 同余最短路,并不是用同余来跑最短路,而是通过同余来构造某些状态,从而达到优化时间空间复杂度的目的.往往这些状态就是最短路中的点,可以类比 ...
- BZOJ2118墨墨的等式[数论 最短路建模]
2118: 墨墨的等式 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1317 Solved: 504[Submit][Status][Discus ...
- Bzoj2118 墨墨的等式
Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1488 Solved: 578 Description 墨墨突然对等式很感兴趣,他正在研究a1x1+ ...
- 数论+spfa算法 bzoj 2118 墨墨的等式
2118: 墨墨的等式 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1283 Solved: 496 Description 墨墨突然对等式很感兴 ...
- bzoj 2118: 墨墨的等式
Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+-+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在 ...
- bzoj 2118 墨墨的等式 - 图论最短路建模
墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在非负整数解. Input ...
- 【BZOJ2118】墨墨的等式(最短路)
[BZOJ2118]墨墨的等式(最短路) 题面 BZOJ 洛谷 题解 和跳楼机那题是一样的. 只不过走的方式从\(3\)种变成了\(n\)种而已,其他的根本没有区别了. #include<ios ...
- 【BZOJ2118】墨墨的等式 最短路
[BZOJ2118]墨墨的等式 Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值 ...
- BZOJ2118: 墨墨的等式(同余类BFS)(数学转为图论题)
2118: 墨墨的等式 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 2944 Solved: 1206[Submit][Status][Discu ...
随机推荐
- ServletContextInitializer添加 servlet filter listener
ServletContextInitializer添加 servlet filter listener https://www.cnblogs.com/pomer-huang/p/9639322.ht ...
- 一个爬虫的demo,requests,beatuifulsoup使用的
爬虫的demo,requests,beatuifulsoup import os,re import requests import random import time from bs4 impor ...
- python中format函数用于字符串的格式化
python中format函数用于字符串的格式化 通过关键字 print('{名字}今天{动作}'.format(名字='陈某某',动作='拍视频'))#通过关键字 grade = {'name' : ...
- github上传本地项目代码
进入github首页,点击新项目new repository,如下图所示: 然后进入如下页面,填写信息: 最后点击Create repository,生成如下页面: 红色圈圈画的步骤,先点击Clone ...
- 如何将一个react组件进行静态化调用
ant-design的message组件可以使用message.xxx的方法调用,调用代码如下: import { message, Button } from 'antd'; const info ...
- 介绍一个免费的云开发工具:Cloud Shell
上周和一德国同事吹牛的时候,他说最近业余时间在玩一个东东,叫做Cloud Shell,Google出品.Jerry之前听说过国内的阿里云也提供过类似的解决方案,即在云端提供一个受限制的Linux环境并 ...
- Hive性能优化【严格模式、join优化、Map-Side聚合、JVM重用】
一.严格模式 通过设置以下参数开启严格模式: >set hive.mapred.mode=strict;[默认为nonstrict非严格模式] 查询限制: 1.对于分区表,必须添加where查询 ...
- 【知识点整理】Oracle中NOLOGGING、APPEND、ARCHIVE和PARALLEL下,REDO、UNDO和执行速度的比较
[知识点整理]Oracle中NOLOGGING.APPEND.ARCHIVE和PARALLEL下,REDO.UNDO和执行速度的比较 1 BLOG文档结构图 2 前言部分 2.1 导读和注意事项 ...
- elasticsearch获取字段missing的数据
用head查询: demo如下 http://localhost:9200/sj_0505/lw_point_location/ _search post { "query": { ...
- Python学习日记(二十八) hashlib模块、configparse模块、logging模块
hashlib模块 主要提供字符加密算法功能,如md5.sha1.sha224.sha512.sha384等,这里的加密算法称为摘要算法.什么是摘要算法?它又称为哈希算法.散列算法,它通过一个函数把任 ...