【luoguP2371】 [国家集训队]墨墨的等式

考虑将所有的\(a_1x_1+a_2x_2+……+a_nx_n=B\)对\(a_1\)取模,那么所有可达到的B就分为了\(0\)~\(a_1-1\)类
如果对\(a_1\)取模为\(k\)的一类\(B\)中最小的\(B\)为\(dis[k]\),那么\(dis[k]+a_1,dis[k]+a_1*2,……\)都是可以取到的,
所以对于每一类求最短路,最后统计答案就行了
#include<iostream>
#include<cstring>
#include<cstdio>
#define int long long
using namespace std;
const int N=15;
const int M=500010;
const int INF=0x3f3f3f3f;
int n,a[N],Bmin,Bmax,am=INF;
int dis[M],que[5000010],head,tail;
bool inque[M];
signed main()
{
scanf("%lld%lld%lld",&n,&Bmin,&Bmax);
for(int i=1;i<=n;++i)
scanf("%lld",&a[i]),am=min(am,a[i]);
memset(dis,0x3f,sizeof(dis));
dis[0]=0;
que[++tail]=0;
while(head<tail){
int u=que[++head];
inque[u]=0;
for(int i=1;i<=n;++i){
int v=(u+a[i])%am;
if(dis[v]>dis[u]+a[i]){
dis[v]=dis[u]+a[i];
if(!inque[v]){
que[++tail]=v;
inque[v]=1;
}
}
}
}
int ans=0;
for(int i=0;i<am;++i)
if(dis[i]<=Bmax){
ans+=(Bmax-dis[i])/am+1;
if(dis[i]<Bmin)
ans-=(Bmin-1-dis[i])/am+1;
}
printf("%lld\n",ans);
return 0;
}
【luoguP2371】 [国家集训队]墨墨的等式的更多相关文章
- 洛谷P2371 [国家集训队]墨墨的等式
P2371 [国家集训队]墨墨的等式 题目描述 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+-+anxn=Ba_1x_1+a_2y_2+-+a_nx_n=Ba1x1+a2y2+-+a ...
- 【同余最短路】【例题集合】洛谷P3403 跳楼机/P2371 墨墨的等式
接触到的新内容,[同余最短路]. 代码很好写,但思路不好理解. 同余最短路,并不是用同余来跑最短路,而是通过同余来构造某些状态,从而达到优化时间空间复杂度的目的.往往这些状态就是最短路中的点,可以类比 ...
- BZOJ2118墨墨的等式[数论 最短路建模]
2118: 墨墨的等式 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1317 Solved: 504[Submit][Status][Discus ...
- Bzoj2118 墨墨的等式
Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1488 Solved: 578 Description 墨墨突然对等式很感兴趣,他正在研究a1x1+ ...
- 数论+spfa算法 bzoj 2118 墨墨的等式
2118: 墨墨的等式 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1283 Solved: 496 Description 墨墨突然对等式很感兴 ...
- bzoj 2118: 墨墨的等式
Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+-+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在 ...
- bzoj 2118 墨墨的等式 - 图论最短路建模
墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在非负整数解. Input ...
- 【BZOJ2118】墨墨的等式(最短路)
[BZOJ2118]墨墨的等式(最短路) 题面 BZOJ 洛谷 题解 和跳楼机那题是一样的. 只不过走的方式从\(3\)种变成了\(n\)种而已,其他的根本没有区别了. #include<ios ...
- 【BZOJ2118】墨墨的等式 最短路
[BZOJ2118]墨墨的等式 Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值 ...
- BZOJ2118: 墨墨的等式(同余类BFS)(数学转为图论题)
2118: 墨墨的等式 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 2944 Solved: 1206[Submit][Status][Discu ...
随机推荐
- easy ui 弹框叠加问题
1.框架用的是.net MVC,Index页面如下所示: @{ Layout = "~/Views/Shared/_CustomerLayout.cshtml"; ViewBag. ...
- vue插件(还真是第一次接触)
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...
- 【转载】C#中Convert.ToDouble方法将字符串转换为double类型
在C#编程过程中,可以使用Convert.ToDouble方法将字符串或者其他可转换为数字的对象变量转换为double类型,Convert.ToDouble方法有多个重载方法,最常使用的一个方法将字符 ...
- HTML实用文本框样式
输入框景背景透明: <input style="background:transparent;border:1px solid #ffffff"> 鼠标划过输入框,输入 ...
- mvc和mvvm模式
一. Mvvm定义 MVVM是Model-View-ViewModel的简写.即模型-视图-视图模型.[模型]指的是后端传递的数据.[视图]指的是所看到的页面.[视图模型]mvvm模式的核心,它是连接 ...
- Nginx配置SSL实现HTTPS访问
nginx配置文件如下: server { listen 443 ssl; server_name www.domain.com; root /www/web; index index.html in ...
- PHP 两个比较运算符 [??] [?:] 差别
1.[??] NULL 合并操作符$a ?? $b即isset($a) ? $a : $b; 注:isset() 已设置并且不为NULL 2.[?:] 三元运算符的简写形式$a ?: $b即$a ? ...
- 使用HTMLTestRunner模块生成测试报告
步骤: 1.下载HTMLTestRunner模块 HTMLTestRunnerCN.py是中文版本的,EN是英文版本的,将要使用的版本放到Python安装目录下lib文件夹中,然后试试看能不能impo ...
- linux下的 c 和 c++ 开发工具及linux内核开发工具
https://opensource.com/article/18/6/embedded-linux-build-tools https://github.com/luong-komorebi/Awe ...
- linux中apt-get使用
apt-get简介 在Ubuntu系统中,经常要用到apt-get install指令来安装软件,由于常常需要root权限来操作,所以搭配sudo食用口感更佳,apt-get指令对于安装.卸载.升级软 ...