BZOJ 2460: [BeiJing2011]元素
2460: [BeiJing2011]元素
Time Limit: 20 Sec Memory Limit: 128 MB
Submit: 878 Solved: 470
[Submit][Status][Discuss]
Description
相传,在远古时期,位于西方大陆的 Magic Land 上,人们已经掌握了用魔法矿石炼制法杖的技术。那时人们就认识到,一个法杖的法力取决于使用的矿石。一般地,矿石越多则法力越强,但物极必反:有时,人们为了获取更强的法力而使用了很多矿石,却在炼制过程中发现魔法矿石全部消失了,从而无法炼制出法杖,这个现象被称为“魔法抵消” 。特别地,如果在炼制过程中使用超过一块同一种矿石,那么一定会发生“魔法抵消”。
后来,随着人们认知水平的提高,这个现象得到了很好的解释。经过了大量的实验后,著名法师 Dmitri 发现:如果给现在发现的每一种矿石进行合理的编号(编号为正整数,称为该矿石的元素序号),那么,一个矿石组合会产生“魔法抵消”当且仅当存在一个非空子集,那些矿石的元素序号按位异或起来为零。 (如果你不清楚什么是异或,请参见下一页的名词解释。 )例如,使用两个同样的矿石必将发生“魔法抵消”,因为这两种矿石的元素序号相同,异或起来为零。
并且人们有了测定魔力的有效途径,已经知道了:合成出来的法杖的魔力等于每一种矿石的法力之和。人们已经测定了现今发现的所有矿石的法力值,并且通过实验推算出每一种矿石的元素序号。
现在,给定你以上的矿石信息,请你来计算一下当时可以炼制出的法杖最多有多大的魔力。
Input
第一行包含一个正整数N,表示矿石的种类数。
接下来 N行,每行两个正整数Numberi 和 Magici,表示这种矿石的元素序号
和魔力值。
Output
仅包一行,一个整数:最大的魔力值
Sample Input
1 10
2 20
3 30
Sample Output
HINT
由于有“魔法抵消”这一事实,每一种矿石最多使用一块。
如果使用全部三种矿石,由于三者的元素序号异或起来:1 xor 2 xor 3 = 0 ,
则会发生魔法抵消,得不到法杖。
可以发现,最佳方案是选择后两种矿石,法力为 20+30=50。
对于全部的数据:N ≤ 1000,Numberi ≤ 10^18,Magici ≤ 10^4。
Source
经过对题意的分析,发现选出的矿石应当构成一组线性基(即其任意一个非空子集的异或和都不为0)。
然后,因为每个矿石带有权值,所以我们需要选出最大权值和的一组线性基。
这个可以贪心的做,先对于所有矿石按照权值从大到小排序,然后贪心的插入线性基。
然后吧,我就mengbi了,虽然知道怎么用高斯消元得到一组简化线性基,但还真是不会维护线性基并不断插入新的数字,经过一番学习和思考,记录该过程如下:
假设我们现在已经插入了前$i-1$个数字,并且线性基为$S$,那么我们新插入一个数字$A_{i}$,我们只想知道能否用已有的线性基异或出这个数字。
我们用$Num_{j}$表示前$i-1$个数字中,其中一个二进制下最高位(最高的1)为$j$的数字。因为前$i-1$个数字一定都能用线性基表示,因此$Num_{j}$是否属于$S$无关紧要,反正我们都能表示出来。
从最高位向下扫描$A_{i}$的每个二进制位,如果$j$位为1,为了异或出这个1,我们需要用到$Num_{j}$,所以将$A_{i}$异或上$Num_{j}$,然后继续该过程。
最终如果$A_{i}$不为0,说明不能用前$i-1$个数字异或出该数,即将该数加入线性基集合$S$。
#include <cstdio>
#include <algorithm> typedef long long lnt; const int mxn = ; struct data
{
lnt a;
int b;
}s[mxn]; inline bool cmp(const data &a, const data &b)
{
return a.b > b.b;
} int n, ans; lnt num[mxn]; signed main(void)
{
scanf("%d", &n); for (int i = ; i <= n; ++i)
scanf("%lld%d", &s[i].a, &s[i].b); std::sort(s + , s + + n, cmp); for (int i = ; i <= n; ++i)
{
for (int j = ; ~j; --j)
if ((s[i].a >> j) & )
{
if (num[j])
s[i].a ^= num[j];
else
{
num[j] = s[i].a;
break;
}
} if (s[i].a)ans += s[i].b;
} printf("%d\n", ans);
}
@Author: YouSiki
BZOJ 2460: [BeiJing2011]元素的更多相关文章
- BZOJ:2460[BeiJing2011]元素 (异或基+贪心)
2460: [BeiJing2011]元素 Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 2910 Solved: 1535 题目链接:https: ...
- BZOJ 2460: [BeiJing2011]元素 线性基
2460: [BeiJing2011]元素 Description 相传,在远古时期,位于西方大陆的 Magic Land 上,人们已经掌握了用魔法矿石炼制法杖的技术.那时人们就认识到,一个法杖的法力 ...
- bzoj 2460 [BeiJing2011]元素 (线性基)
链接:https://www.lydsy.com/JudgeOnline/problem.php?id=2460 题意: 给你一堆矿石,矿石有a,b两种性质,取任意个矿石,满足取得的这些矿石a性质异或 ...
- BZOJ.2460.[BeiJing2011]元素(线性基 贪心)
题目链接 线性基:https://blog.csdn.net/qq_36056315/article/details/79819714. \(Description\) 求一组矿石,满足其下标异或和不 ...
- BZOJ 2460 [BeiJing2011]元素(线性基模板题)
Description 相传,在远古时期,位于西方大陆的 Magic Land 上,人们已经掌握了用魔法矿石炼制法杖的技术.那时人们就认识到,一个法杖的法力取决于使用的矿石.一般地,矿石越多则法力越强 ...
- BZOJ 2460: [BeiJing2011]元素 贪心,线性基
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2460 解法:从大到小排序,依次贪心的添加到当前集合就可以了,需要动态维护线性基.用拟阵证明 ...
- BZOJ 2460 [BeiJing2011]元素 ——线性基
[题目分析] 线性基,由于最多有63个,只需要排序之后,动态的去维护线性基即可. [代码] #include <cstdio> #include <cstring> #incl ...
- bzoj 2460: [BeiJing2011]元素【线性基+贪心】
先按魔力值从大到小排序,然后从大到小插入线性基中,如果插入成功就加上这个魔力值 因为线性基里是没有异或和为0的集合的,所以正确性显然,然后最优性,考虑放进去一个原来没选的,这样为了可行性就要删掉一个, ...
- 2460: [BeiJing2011]元素
2460: [BeiJing2011]元素 链接 分析: 贪心的想:首先按权值排序,然后从大到小依次放,能放则放.然后用线性基维护是否合法. 代码: #include<cstdio> #i ...
随机推荐
- 关于Netty的学习前总结
摘要 前段时间一直在学习netty因为工作忙的原因没有写一个学习的总结,今天抽个空先把总结写了吧.事先声明,本文不会详细的介绍每一个部分不过每个部分都会附上讲解详细的url.本文只是为了解释通Nett ...
- c语言数字图像处理(六):二维离散傅里叶变换
基础知识 复数表示 C = R + jI 极坐标:C = |C|(cosθ + jsinθ) 欧拉公式:C = |C|ejθ 有关更多的时域与复频域的知识可以学习复变函数与积分变换,本篇文章只给出DF ...
- PHP核心技术——异常和错误处理
PHP只有手动抛出异常后才能捕获异常 $a = null; try { $a = 5/0; echo $a,PHP_EOL; } catch (exception $e) { $e -> get ...
- docker私服搭建nexus3
docker私服搭建有官方的registry镜像,也有改版后的NexusOss3.x,因为maven的原因搭建了nexus,所以一并将docker私服也搭建到nexus上. nexus的安装过程就单独 ...
- golang slice使用不慎导致的问题
原文链接 : http://www.bugclosed.com/post/16 背景 go语言中切片slice是方便且好用的强大数据结构,但是使用的时候需要注意,不然容易出问题,最近因为遇到了一个sl ...
- BugPhobia开发篇章:Scurm Meeting-更新至0x03
0x01 :目录与摘要 If you weeped for the missing sunset, you would miss all the shining stars 索引 提纲 整理与更新记录 ...
- 今日事——Sprint计划会议
一. Sprint需求: 解屏提醒部分 界面设计 登录功能 备忘功能 成就系统 二.工作认领: 因有成员请假回家,所以延后认领,目前主要任务是学习如何在andriod平台开发并搭建开发环境. 网上 ...
- Task 4.2 求一个矩阵的最大子矩阵的和
任务:输入一个二维整形数组,数组里有正数也有负数.二维数组中连续的一个子矩阵组成一个子数组,每个子数组都有一个和.求所有子数组的和的最大值.要求时间复杂度为O(n). (1)设计思想:把二维矩阵分解成 ...
- 手机访问本地php项目遇到的问题及解决
做html5的本地应用要调试后台,学了下php 按照和连j2ee的时候一样,电脑发射wifi,ipconfig..等等 发现tomcat的可以访问,apache的不能访问,搜索好久,没找到解答, j ...
- VMware上配置DPDK环境并运行实例程序
1. 在虚拟机VMware上配置环境 VMware安装:http://www.zdfans.com/html/5928.html Ubuntu:https://www.ubuntu.com/downl ...