用R做时间序列分析之ARIMA模型预测
昨天刚刚把导入数据弄好,今天迫不及待试试怎么做预测,网上找的帖子跟着弄的。
第一步.对原始数据进行分析
一.ARIMA预测时间序列
指数平滑法对于预测来说是非常有帮助的,而且它对时间序列上面连续的值之间相关性没有要求。但是,如果你想使用指数平滑法计算出预测区间,那么预测误差必须是不相关的, 而且必须是服从零均值、 方差不变的正态分布。即使指数平滑法对时间序列连续数值之间相关性没有要求,在某种情况下,我们可以通过考虑数据之间的相关性来创建更好的预测模型。自回归移动平均模型( ARIMA) 包含一个确定(explicit)的统计模型用于处理时间序列的不规则部分,它也允许不规则部分可以自相关。
二.确定数据的差分
ARIMA 模型为平稳时间序列定义的。 因此, 如果你从一个非平稳的时间序列开始,首先你就需要做时间序列差分直到你得到一个平稳时间序列。如果你必须对时间序列做 d 阶差分才能得到一个平稳序列,那么你就使用ARIMA(p,d,q)模型,其中 d 是差分的阶数。
我们以每年女人裙子边缘的直径做成的时间序列数据为例。从 1866 年到 1911 年在平均值上是不平稳的。 随着时间增加, 数值变化很大。
下面是.dat数据:
下面进入预测。先导入数据:
> skirts <- scan("http://robjhyndman.com/tsdldata/roberts/skirts.dat",skip=5) #导入在线数据,并跳过前5行
Read 46 items #R控制台显示内容,表示共读取46行数据
> skirts<- ts(skirts,start = c(1866)) #设定时间1866开始
> plot.ts(skirts) #画出图
我们可以通过键入下面的代码来得到时间序列(数据存于“skirtsts”) 的一阶差分, 并画出差分序列的图:
> skirtsdiff<-diff(skirts,differences=1) #一阶差分
> plot.ts(skirtsdiff) #画图
从一阶差分的图中可以看出,数据仍是不平稳的。我们继续差分。
> skirtsdiff2<-diff(skirts,differences=2)
> plot.ts(skirtsdiff2)
二次差分(上面)后的时间序列在均值和方差上确实看起来像是平稳的, 随着时间推移,时间序列的水平和方差大致保持不变。因此,看起来我们需要对裙子直径进行两次差分以得到平稳序列。
第二步,找到合适的ARIMA模型
如果你的时间序列是平稳的,或者你通过做 n 次差分转化为一个平稳时间序列, 接下来就是要选择合适的 ARIMA模型,这意味着需要寻找 ARIMA(p,d,q)中合适的 p 值和 q 值。为了得到这些,通常需要检查[平稳时间序列的(自)相关图和偏相关图。
我们使用 R 中的“acf()”和“pacf” 函数来分别(自) 相关图和偏相关图。“acf()”和“pacf 设定“plot=FALSE” 来得到自相关和偏相关的真实值。
> acf(skirtsdiff2,lag.max=20)
> acf(skirtsdiff2,lag.max=20,plot=FALSE)
Autocorrelations of series ‘skirtsdiff2’, by lag
0 1 2 3 4 5 6 7 8 9 10 11 12
1.000 -0.303 0.096 0.009 0.102 -0.453 0.173 -0.025 -0.039 0.073 -0.094 0.133 -0.089
13 14 15 16 17 18 19 20
-0.027 -0.102 0.207 -0.260 0.114 0.101 0.011 -0.090
自相关图显示滞后1阶自相关值基本没有超过边界值,虽然5阶自相关值超出边界,那么很可能属于偶然出现的,而自相关值在其他上都没有超出显著边界,而且我们可以期望 1 到 20 之间的会偶尔超出 95%的置信边界。
> pacf(skirtsdiff2,lag.max=20)
> pacf(skirtsdiff2,lag.max=20,plot=FALSE)
Partial autocorrelations of series ‘skirtsdiff2’, by lag
1 2 3 4 5 6 7 8 9 10 11 12 13
-0.303 0.005 0.043 0.128 -0.439 -0.110 0.073 0.028 0.128 -0.355 0.095 0.052 -0.094
14 15 16 17 18 19 20
-0.103 -0.034 -0.021 -0.002 0.074 0.020 -0.034
偏自相关值选5阶。
故我们的ARMIA模型为armia(1,2,5)
> skirtsarima<-arima(skirts,order=c(1,2,5))
> skirtsarima
Call:
arima(x = skirts, order = c(1, 2, 5))
SSeries: skirts
ARIMA(1,2,5)
Coefficients:
ar1 ma1 ma2 ma3 ma4 ma5
-0.4345 0.2762 0.1033 0.1472 0.0267 -0.8384
s.e. 0.1837 0.2171 0.2198 0.2716 0.1904 0.2888
sigma^2 estimated as 206.1: log likelihood = -183.8, aic = 381.6
所以,相应的评价标准的值:
sigma^2 estimated as 206.1: log likelihood=-183.8
AIC=381.6 AICc=384.71 BIC=394.09
预测后5年裙子的边缘直径
> skirtsarimaforecast<-forecast(skirtsarima,h=5,level=c(99.5))
> skirtsarimaforecast
R控制台的输出为:
Point Forecast Lo 99.5 Hi 99.5
1912 548.5762 507.1167 590.0357
1913 545.1793 459.3292 631.0295
1914 540.9354 396.3768 685.4940
1915 531.8838 316.2785 747.4892
1916 529.1296 233.2625 824.9968
输入下面指令,得到残差图像:
> plot.forecast(skirtsarimaforecast$residuals)
第三步,检验
在指数平滑模型下, 观察 ARIMA 模型的预测误差是否是平均值为 0 且方差为常数的正态分布(服从零均值、方差不变的正态分布) 是个好主意,同时也要观察连续预测误差是否(自)相关。
> acf(skirtsarimaforecast$residuals,lag.max=20)
输入下面指令:
> Box.test(skirtsarimaforecast$residuals, lag=20, type="Ljung-Box")
R控制台输出:
Box-Ljung test
data: skirtsarimaforecast$residuals
X-squared = 8.5974, df = 20, p-value = 0.9871
既然相 关图显示出在滞后1 - 20阶( lags 1 - 20 )中样本自相关值都没有超出显著(置信)边界,而且Ljung-Box检验的p值为0.99,所以我们推断在滞后1-20阶(lags1-20)中没明显证据说明预测 误差是非零自相关的。
为了调查预测误差是否是平均值为零且方差为常数的正态分布(服从零均值、方差不变的正态分布),我们可以做预测误差的时间曲线图和直方图(具有正态分布曲线):
> plot.ts(skirtsarimaforecast$residuals)
下面我参考了这里http://blog.csdn.net/howardge/article/details/42002733,不过还是没成功
为了更具体的展现,我们需要借助少量的代码,首先构建函数plotForecastErrors:(我自己也没弄懂)
plotForecastErrors <- function(forecasterrors)
{
# make a red histogram of the forecast errors:
mysd <- sd(forecasterrors)
hist(forecasterrors, col="red", freq=FALSE) # freq=FALSE ensures the area under the histogram =
# generate normally distributed data with mean and standard deviation mysd
mynorm <- rnorm(, mean=, sd=mysd)
myhist <- hist(mynorm, plot=FALSE) # plot the normal curve as a blue line on top of the histogram of forecast errors:
points(myhist$mids, myhist$density, type="l", col="blue", lwd=)
}
继续输入:
>source("plotForecastErrors.R") #这里没成功
> plotForecastErrors(skirtsarimaforecast$residuals) #显示不存在前面的函数,没解决呢
上图预测中的时间曲线图显示出对着时间增加,方差大致为常数(大致不变)(尽管上半部分的时间序
列方差看起来稍微高一些)。时间序列的直方图显示预测误大致是正态分布的且平均值接近于 0(服从零均值的正态分布的)。因此,把预测误差看作平均值为0方差为常数正态分布(服从零均值、方差不变的正态分布)是合理的。
既然依次连续的预测误差看起来不是相关,而且看起来是平均值为 0 方差为常数的正态分布(服从零均值、方差不变的正态分布),那么对于裙子直径的数据, ARIMA(1,2,5)看起来是可以提供非常合适预测的模型。
注:如果在R界面输入画图指令,但是找不到图形,可以从R控制台的”窗口”选项选择“R Graphics”,既可以调出所画图形。
用R做时间序列分析之ARIMA模型预测的更多相关文章
- 【R实践】时间序列分析之ARIMA模型预测___R篇
时间序列分析之ARIMA模型预测__R篇 之前一直用SAS做ARIMA模型预测,今天尝试用了一下R,发现灵活度更高,结果输出也更直观.现在记录一下如何用R分析ARIMA模型. 1. 处理数据 1.1. ...
- 时间序列分析之ARIMA模型预测__R篇
http://www.cnblogs.com/bicoffee/p/3838049.html
- [python] 时间序列分析之ARIMA
1 时间序列与时间序列分析 在生产和科学研究中,对某一个或者一组变量 进行观察测量,将在一系列时刻 所得到的离散数字组成的序列集合,称之为时间序列. 时间序列分析是根据系统观察得到的时间序列数据, ...
- R与金钱游戏:美股与ARIMA模型预测
似乎突如其来,似乎合情合理,我们和巴菲特老先生一起亲见了一次,又一次,双一次,叒一次的美股熔断.身处历史的洪流,渺小的我们会不禁发问:那以后呢?还会有叕一次吗?于是就有了这篇记录:利用ARIMA模型来 ...
- R语言--时间序列分析步骤
大白. (1)根据趋势定差分 plot(lostjob,type="b") 查看图像总体趋势,确定如何差分 df1 = diff(lostjob) d=1阶差分 s4_df1=d ...
- 基于 Keras 的 LSTM 时间序列分析——以苹果股价预测为例
简介 时间序列简单的说就是各时间点上形成的数值序列,时间序列分析就是通过观察历史数据预测未来的值.预测未来股价走势是一个再好不过的例子了.在本文中,我们将看到如何在递归神经网络的帮助下执行时间序列分析 ...
- R语言的ARIMA模型预测
R通过RODBC连接数据库 stats包中的st函数建立时间序列 funitRoot包中的unitrootTest函数检验单位根 forecast包中的函数进行预测 差分用timeSeries包中di ...
- 不知道怎么改的尴尬R语言的ARIMA模型预测
数据还有很多没弄好,程序还没弄完全好. > read.xlsx("H:/ProjectPaper/论文/1.xlsx","Sheet1") > it ...
- Redhat 5.8系统安装R语言作Arima模型预测
请见Github博客:http://wuxichen.github.io/Myblog/timeseries/2014/09/02/RJavaonLinux.html
随机推荐
- 通过exp命令对Oracle数据库进行备份操作(提供两种情况的备份:备份本地,备份远程的数据库)
exp 用户名/密码@数据库所在ip地址:数据库端口号/数据库的service-name file=存储到的位置 这个是能成功的 http://www.2cto.com/database/201402 ...
- 论如何制做一个工程APP的测试内容
测试一般在软件开发过程中就已经开始进行了,测试越早.发现问题解决他的方案成本就越小.测试按照类型来区分可以划分为:单元测试,集成测试,系统测试.而OCUNIT是XCODE自带的单元测试工具.需要建立新 ...
- 20172308 实验二《Java面向对象程序设计 》实验报告
20172308 2017-2018-2 <程序设计与数据结构>实验2报告 课程:<程序设计与数据结构> 班级: 1723 姓名: 周亚杰 学号:20172308 实验教师:王 ...
- C#中周,月,第几周,周开始结束时间de方法总结
1.c#获取当前时间是本年的第几周,本月的第几周 private static int getWeekNumInMonth(DateTime daytime) { int dayInMonth = d ...
- MYSQL-不能创建表
Can't create table '.\ticket\user_role.frm' (errno: 121) 语法是对的,但显示上面的错误 原因有三种 1.表名重复 2.以该名字命名的表之前创建过 ...
- Express搭建NodeJS项目
1.安装Node.js: 2.安装npm; 3.安装Express; 在本例中默认全局安装express 安装express生成器 如果没有安装express-generator或安装路径不对,会报以 ...
- Redis内存回收:LRU算法
Redis技术交流群481804090 Redis:https://github.com/zwjlpeng/Redis_Deep_Read Redis中采用两种算法进行内存回收,引用计数算法以及LRU ...
- jquery on 事件嵌套 事件执行多次
今天做了个项目,就是想点击添加然后追加一列,点击这一列的修改按钮,在修改, //编辑事件 $('#eventTable').on('click','.edit_n',function(){ var i ...
- Prism框架的优点
以我粗略的了解,prism/mvvm可以做到完全的逻辑和ui分离.即便是事件都是如此.这是主要优点.mvc是从本质上ui框架(当前大量半吊子把业务逻辑写在里面是不对的),mvvm包含客户端的业务逻辑. ...
- mongodb 下载安装 转
MongoDB是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的.他支持的数据结构非常松散,是类似json的bjson格式,因此可以存储比较复杂的数据类型.M ...