题目描述

在Bytemountains有N座山峰,每座山峰有他的高度\(h_i\)。有些山峰之间有双向道路相连,共M条路径,每条路径有一个困难值,这个值越大表示越难走,现在有Q组询问,每组询问询问从点v开始只经过困难值小于等于x的路径所能到达的山峰中第k高的山峰,如果无解输出-1。

输入输出格式

输入格式:

第一行三个数N,M,Q。 第二行N个数,第ii个数为\(h_i\) 接下来MM行,每行33个数a,b,c,表示从a到b有一条困难值为c的双向路径。 接下来Q行,每行三个数v,x,k,表示一组询问。

输出格式:

对于每组询问,输出一个整数表示答案。

输入输出样例

输入样例#1: 复制

10 11 4

1 2 3 4 5 6 7 8 9 10

1 4 4

2 5 3

9 8 2

7 8 10

7 1 4

6 7 1

6 4 8

2 1 5

10 8 10

3 4 7

3 4 6

1 5 2

1 5 6

1 5 8

8 9 2

输出样例#1: 复制

6

1

-1

8

说明

数据范围

\(N \le 10^5, 0 \le M,Q \le 5\times 10^5,h_i,c,x \le 10^9\)。


kruskal重构树

对于每一个节点其子树的叶子就是在这个点的权值内能相互到达的点

按照dfs序建可持久化权值线段树,dfs序\(u\)到\(u+size[u]\)内每个点的增量就是\(pre[u]\)子树的点

每次查询时把\(v\)倍增跳到\(\leq x\)的最大值,在\((dfn[x]+size[x])-(dfn[x]-1)\)的线段树内找第\(k\)大节点即可


恩......


#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#define M (200005*10)
#define N 200005
#define LL long long
#define max(a,b) ((a)>(b)? (a):(b))
#define min(a,b) ((a)<(b)? (a):(b)) using namespace std; int top[N],d[M],h[N],ls[M],rs[M],n,m,q,cnt,f[N],edge[N],cnt1,y;
int head[N],ver[N],nex[N],dfn[N],df,pre[M],g,z[N],pp[N],v,x,k,bz[N][26],s[N],az[N][26];
struct vv{ int f,t,edge;} a[M];
inline bool cmp(vv a,vv b) {return a.edge<b.edge;} inline char gc()
{
static char now[1<<22],*S,*T;
if (T==S)
{
T=(S=now)+fread(now,1,1<<22,stdin);
if (T==S) return EOF;
}
return *S++;
}
inline int gtt()
{
register int x=0,f=1;
register char ch=gc();
while(!isdigit(ch))
{
if (ch=='-') f=-1;
ch=gc();
}
while(isdigit(ch)) x=(x<<1)+(x<<3)+ch-'0',ch=gc();
return x*f;
}
inline void add(int x,int y)
{
cnt1+=1;
ver[cnt1]=y; nex[cnt1]=head[x]; head[x]=cnt1;
} int ff(int x)
{
if(f[x]==x) return x;
f[x]=ff(f[x]);
return f[x];
} inline void kru()
{
for(int i=1;i<=m;i++)
{
int w=ff(a[i].f), e=ff(a[i].t);
if(w!=e)
{
f[w]=f[e]=++n;
add(n,w); add(n,e);
edge[n]=a[i].edge;
}
}
} void dfs(int now)
{
bz[now][0]=edge[now];
s[now]=1; dfn[now]=++df; pre[df]=now;
for(int i=head[now];i;i=nex[i])
{
int t=ver[i];
dfs(t);
bz[t][1]=edge[now];
az[t][1]=now;
s[now]+=s[t];
}
} void built(int now,int l,int r,int pre,int z)
{
if(l==r)
{
d[now]=d[pre]+1;
return;
}
int mid=(l+r)>>1; ls[now]=ls[pre]; rs[now]=rs[pre];
if(z<=mid)
{
ls[now]=++cnt;
built(ls[now],l,mid,ls[pre],z);
}
if(z>mid)
{
rs[now]=++cnt;
built(rs[now], mid+1, r, rs[pre], z);
}
d[now]=d[ls[now]]+d[rs[now]];
} void built1(int now,int l,int r)
{
if(l==r) return;
ls[now]=++cnt; rs[now]=++cnt;
int mid=(l+r)>>1;
built1(ls[now], l, mid);
built1(rs[now], mid+1, r);
} int find(int now1,int now2,int l,int r,int z)
{
if(l==r) return l;
if(d[now2]-d[now1]<z) return -1;
int mid=(l+r)>>1;
if(d[rs[now2]]-d[rs[now1]]>=z) return find(rs[now1], rs[now2], mid+1, r, z);
return find(ls[now1], ls[now2], l, mid, z-d[rs[now2]]+d[rs[now1]]);
} int main()
{
n=gtt(); m=gtt(); q=gtt(); g=n;
for(int i=1;i<=4*n;i++) f[i]=i; for(int i=1;i<=n;i++) h[i]=gtt(), z[i]=h[i];
sort(z+1,z+1+n);
int mm=unique(z+1,z+1+n)-z-1;
for(int i=1;i<=n;i++)
{
k=lower_bound(z+1,z+1+mm,h[i])-z;
pp[k]=h[i]; h[i]=k;
} for(int i=1;i<=m;i++){ a[i].f=gtt(); a[i].t=gtt(); a[i].edge=gtt();}
sort(a+1,a+1+m,cmp); kru(); for(int i=n;i;i--) if(!dfn[i]) dfs(i); if(g!=1){top[1]=1; cnt=1; built1(1,1,mm);}
else {top[1]=1; cnt=1;built(cnt,1,mm,0,h[pre[1]]);} for(int i=2;i<=n;i++)
if(pre[i]<=g)
{
top[i]=++cnt;
built(cnt,1,mm,top[i-1],h[pre[i]]);
}
else top[i]=top[i-1]; for(int i=2;i<=25;i++)
for(int j=1;j<=n;j++)
bz[j][i]=bz[az[j][i-1]][i-1], az[j][i]=az[az[j][i-1]][i-1]; for(int i=1;i<=q;i++)
{
v=gtt(); x=gtt(); k=gtt();
for(int j=25;j>=1;j--) if(bz[v][j]<=x && az[v][j]) v=az[v][j];
k=find(top[dfn[v]-1],top[dfn[v]+s[v]-1],1,mm,k);
if(k!=-1)printf("%d\n",pp[k]);
else printf("-1\n"); }
}

P4197 Peaks的更多相关文章

  1. BZOJ 3545 / 洛谷 P4197 Peaks 解题报告

    P4197 Peaks 题目描述 在\(\text{Bytemountains}\)有\(N\)座山峰,每座山峰有他的高度\(h_i\).有些山峰之间有双向道路相连,共\(M\)条路径,每条路径有一个 ...

  2. [luogu P4197] Peaks 解题报告(在线:kruskal重构树+主席树 离线:主席树+线段树合并)

    题目链接: https://www.luogu.org/problemnew/show/P4197 题目: 在Bytemountains有N座山峰,每座山峰有他的高度$h_i$.有些山峰之间有双向道路 ...

  3. Luogu P4197 Peaks

    题目链接 \(Click\) \(Here\) 做法:\(Kruskal\)重构树上跑主席树 构造方法:把每条边拆出来成一个点,点权是原先的边权.每次连边的时候,连的不再是点,而是其原先点所在的联通块 ...

  4. 洛谷P4197 Peaks&&克鲁斯卡尔重构树学习笔记(克鲁斯卡尔重构树+主席树)

    传送门 据说离线做法是主席树上树+启发式合并(然而我并不会) 据说bzoj上有强制在线版本只能用克鲁斯卡尔重构树,那就好好讲一下好了 这里先感谢LadyLex大佬的博客->这里 克鲁斯卡尔重构树 ...

  5. 洛谷P4197 Peaks(Kruskal重构树 主席树)

    题意 题目链接 往后中文题就不翻译了qwq Sol 又是码农题..出题人这是强行把Kruskal重构树和主席树拼一块了啊.. 首先由于给出的限制条件是<=x,因此我们在最小生成树上走一定是最优的 ...

  6. P4197 Peaks [克鲁斯卡尔重构树 + 主席树][克鲁斯卡尔重构树学习笔记]

    Problem 在\(Bytemountains\)有\(n\)座山峰,每座山峰有他的高度\(h_i\) .有些山峰之间有双向道路相连,共\(M\)条路径,每条路径有一个困难值,这个值越大表示越难走, ...

  7. 洛谷P4197 Peaks (Kruskal重构树)

    读题,只经过困难值小于等于x的路径,容易想到用Kruskal重构树:又要查询第k高的山峰,我们选择用主席树求解. 先做一棵重构树,跑一遍dfs,重构树中每一个非叶子节点对应一段区间,我们开range[ ...

  8. Luogu_4197 Peaks

    P4197 Peaks 并不会克鲁斯卡尔重构树,于是就写了离线算法. 使用了最小生成树,启发式合并treap 在最小生成树,克鲁斯卡尔算法 时 ,将询问一块处理.便可以保证询问时边的要求.然后利用平衡 ...

  9. kruscal重构树略解

    我们先看一道题:Luogu P4197 Peaks 这道题珂以用启发式合并+主席树来做 那么强制在线呢?(bzoj 3551 [ONTAK2010]Peaks加强版) 离线做法就不行了 我们就要用一个 ...

随机推荐

  1. [javaSE] 网络编程(TCP,UDP,Socket特点)

    UDP特点: 面向无连接,把数据打包发过去,收不收得到我不管 数据大小有限制,一次不能超过64k,可以分成多个包 这是个不可靠的协议 速度很快 视频直播,凌波客户端,feiQ都是UDP协议 TCP特点 ...

  2. 利用CEF山寨一个翻译器

    起因 在某些情况下,有将从某种类型的语言翻译成另一种类型语言的需求.比如在生成实体时,可能需要将中文名称转换成英文.于是利用CEFSharp山寨了一个翻译器.效果图如下: CEF简介 CEF全称为Ch ...

  3. 高并发第八弹:J.U.C起航(java.util.concurrent)

    java.util.concurrent是JDK自带的一个并发的包主要分为以下5部分: 并发工具类(tools) 显示锁(locks) 原子变量类(aotmic) 并发集合(collections) ...

  4. css3中Animation

    CSS3我在5年之前就有用了,包括公司项目都一直在很前沿的技术. 最近在写慕课网的七夕主题,用了大量的CSS3动画,但是真的沉淀下来仔细的去深入CSS3动画的各个属性发现还是很深的,这里就写下关于帧动 ...

  5. Android手动显示和隐藏软键盘

    1.方法一(如果输入法在窗口上已经显示,则隐藏,反之则显示) InputMethodManager imm = (InputMethodManager) getSystemService(Contex ...

  6. visibilitychange:API详解

    利用页面可见性API搞个怪 继各大站点.博客在用console发招聘.玩游戏.埋彩蛋之后(知乎相关链接),小剧似乎又发现了一个好玩儿的东西,目测会火,利用页面可见性API做些小技俩. 页面可见性是什么 ...

  7. 解决input为number类型时maxlength无效的问题

    使用input数字number类型的时候maxlength无效,假设需要控制输入数量为18,可以用以下方式: 无效: <input type="text"  maxlengt ...

  8. git远程仓库问题

    1:下载下来的仓库,可能变更远程仓库 git remote rm origin (origin默认的远程仓库名) 可以在.git文件夹下的config文件查看remote的信息. 同时也可以查看bra ...

  9. 一步一步 Pwn RouterOS之调试环境搭建&&漏洞分析&&poc

    前言 本文由 本人 首发于 先知安全技术社区: https://xianzhi.aliyun.com/forum/user/5274 本文分析 Vault 7 中泄露的 RouterOs 漏洞.漏洞影 ...

  10. C# Base64Helper

    public static class Base64Helper { /// <summary> /// base64字符保存图片到本 /// </summary> /// & ...