https://blog.csdn.net/dream_maker_yk/article/details/80377490

斯特林数有时并没有用。

 #include<cstdio>
#include<cstring>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
typedef long long ll;
using namespace std; const int N=;
int n,a,b,mod,m,k,ans,fac[N],inv[N]; struct Mat{
int a[N][N];
Mat(){ memset(a,,sizeof(a)); }
}; Mat operator *(const Mat &a,const Mat &b){
Mat c;
rep(i,,m-) rep(j,,m-) if (a.a[i][j])
rep(k,,m-) if (b.a[j][k]) c.a[i][k]=(c.a[i][k]+1ll*a.a[i][j]*b.a[j][k])%mod;
return c;
} Mat ksm(const Mat &a,int b){
Mat c=a,res;
rep(i,,m-) res.a[i][i]=;
for (; b; c=c*c,b>>=)
if (b & ) res=res*c;
return res;
} int C(int n,int m){ return n<m ? : 1ll*fac[n]*inv[m]%mod*inv[n-m]%mod; } int ksm(int a,int b){
int res=;
for (; b; a=1ll*a*a%mod,b>>=)
if (b & ) res=1ll*res*a%mod;
return res;
} int main(){
scanf("%d%d%d%d",&n,&a,&b,&mod);
k=a+b+; m=*k;
fac[]=; rep(i,,m) fac[i]=1ll*fac[i-]*i%mod;
inv[m]=ksm(fac[m],mod-);
for (int i=m-; ~i; i--) inv[i]=1ll*inv[i+]*(i+)%mod;
Mat s; rep(i,,k-) s.a[i][i+k]=;
rep(i,,k-) rep(j,,i) s.a[j][i]=s.a[j+k][i]=C(i,j);
s=ksm(s,n); int x=,ans=;
rep(i,,b) ans=(ans+1ll*C(b,i)*x%mod*(s.a[][a+b-i]+s.a[][a+b-i+k])%mod*(((b-i)&)?-:))%mod,x=1ll*x*n%mod;
printf("%d\n",(ans+mod)%mod);
return ;
}

[BZOJ5298][CQOI2018]交错序列(DP+矩阵乘法)的更多相关文章

  1. BZOJ5298 CQOI2018 交错序列 【DP+矩阵快速幂优化】*

    BZOJ5298 CQOI2018 交错序列 [DP+矩阵快速幂优化] Description 我们称一个仅由0.1构成的序列为"交错序列",当且仅当序列中没有相邻的1(可以有相邻 ...

  2. 【bzoj2004】[Hnoi2010]Bus 公交线路 状压dp+矩阵乘法

    题目描述 小Z所在的城市有N个公交车站,排列在一条长(N-1)km的直线上,从左到右依次编号为1到N,相邻公交车站间的距离均为1km. 作为公交车线路的规划者,小Z调查了市民的需求,决定按下述规则设计 ...

  3. 【bzoj3329】Xorequ 数位dp+矩阵乘法

    题目描述 输入 第一行一个正整数,表示数据组数据 ,接下来T行每行一个正整数N 输出 2*T行第2*i-1行表示第i个数据中问题一的解, 第2*i行表示第i个数据中问题二的解, 样例输入 1 1 样例 ...

  4. [CQOI2018]交错序列 (矩阵快速幂,数论)

    [CQOI2018]交错序列 \(solution:\) 这一题出得真的很好,将原本一道矩阵快速幂硬生生加入组合数的标签,还那么没有违和感,那么让人看不出来.所以做这道题必须先知道(矩阵快速幂及如何构 ...

  5. 【BZOJ-4386】Wycieczki DP + 矩阵乘法

    4386: [POI2015]Wycieczki Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 197  Solved: 49[Submit][Sta ...

  6. Luogu P4643 【模板】动态dp(矩阵乘法,线段树,树链剖分)

    题面 给定一棵 \(n\) 个点的树,点带点权. 有 \(m\) 次操作,每次操作给定 \(x,y\) ,表示修改点 \(x\) 的权值为 \(y\) . 你需要在每次操作之后求出这棵树的最大权独立集 ...

  7. LOJ.6074.[2017山东一轮集训Day6]子序列(DP 矩阵乘法)

    题目链接 参考yww的题解.本来不想写来但是他有一些笔误...而且有些地方不太一样就写篇好了. 不知不觉怎么写了这么多... 另外还是有莫队做法的...(虽然可能卡不过) \(60\)分的\(O(n^ ...

  8. ZOJ - 3216:Compositions (DP&矩阵乘法&快速幂)

    We consider problems concerning the number of ways in which a number can be written as a sum. If the ...

  9. 【BZOJ 3326】[Scoi2013]数数 数位dp+矩阵乘法优化

    挺好的数位dp……先说一下我个人的做法:经过观察,发现这题按照以往的思路从后往前递增,不怎么好推,然后我就大胆猜想,从前往后推,发现很好推啊,维护四个变量,从开始位置到现在有了i个数 f[i]:所有数 ...

随机推荐

  1. “榕树下·那年”移动app ( hybrid ) 开发总结

        榕树下网站本身的技术人员并不多,所以app开发的任务就到了母公司盛大文学这边.       盛大文学无线业务中心负责这次具体开发任务.       一如既往的,开发的情况是:时间紧,任务重,人 ...

  2. 通过BurpSuite和sqlmap配合对dvwa进行sql注入测试和用户名密码暴力破解

    0x1 工具和环境介绍 dvwa:渗透测试环境 BurpSuite:强大的WEB安全测试工具 sqlmap:强大的sql注入工具 以上工具和环境都在kali linux上安装和配置. 0x2 步骤说明 ...

  3. 芒果TV 视频真实的地址获取

    # coding=utf-8 import requests import json import re import os import urlparse import random vid = r ...

  4. MongoDB(3.6.3)的用户认证初识

    Windows 10家庭中文版,MongoDB 3.6.3, 前言 刚刚安装好了MongoDB,启动了服务器-mongod命令,启动了MongoDB shell-mongo命令,不过,全程都没有使用u ...

  5. 关于json中转义字符/正斜杠的问题。

    1.首先有关转义字符 可以看百度百科: 先不管/是否需要转义,我们去json的官方网站去看看:http://www.json.org/ 可见有这个,那么意思是 json中 又规定建议了一下,意思是虽然 ...

  6. eclipse中Maven项目jar问题

    eclipse中Maven项目jar包下载下来了,不然我们import是时候根本导入不进来,网上的方法都试过了,Maven仓库也清空过后重新下载过了,都解决不了. 后来发现虽然jar包是下载下来了,可 ...

  7. Linux学习笔记:vi常用命令

    在Linux系统中常用vi命令进行文本编辑. vi命令是UNIX操作系统和类UNIX操作系统中最通用的全屏幕纯文本编辑器.Linux中的vi编辑器叫vim,它是vi的增强版(vi Improved), ...

  8. MySQL学习笔记:definer与sql security

    在以下例子中,出现definer于sql security invoker,导致不解,遂学习一翻. # 创建存储过程 DELIMITER $$ CREATE DEFINER = Hider@local ...

  9. Entity Framework Code First 在Object Join Linq查询时出现全表查询的语句。

    最近一个项目,使用微软的Entity Framework的ORM框架的项目,部署到现场后,出现了系统缓慢,多个客户端的内存溢出崩溃的问题. 打开了SQL Server Profiler(SQL Ser ...

  10. OS X 配置 Apache

    1.去掉javascript:void(0);Include /private/etc/apache2/extra/httpd-vhosts.con的注释,以启用虚拟主机: 2.在<Direct ...