算法描述

在普利姆算法的lazy实现中,参考:普利姆算法的lazy实现

我们现在来考虑这样一个问题:

我们将所有的边都加入了优先队列,但事实上,我们真的需要所有的边吗?

我们再回到普利姆算法的lazy实现,看一下这个问题:



当顺着顶点0的邻接表考察顶点7时,边7-2和边7-1被加入了优先队列Q.

然而,当我们开始对顶点2进行考察时:

边2-3是最轻边,我们显然不需要对边7-2和边7-1进行再次考察.

但是,由于边7-2和边7-1在对顶点2进行考察之前已经加入了优先队列Q,似乎我们对之前发生的事无可奈何,也必须让优先队列维护着这些不再候选的废边,从而加重了优先队列的负担,影响了效率.

结果是否真的如此?

如果我们仔细思考,会注意到我们可以采取这样的一个技巧去防止将废边加入优先队列:

我们关注的只是当前能看到的最轻边,所以边7-2和边7-1对我们来说只有这样的意义:

边7-2:到顶点2的距离是x;

边7-1:到顶点2的距离是y;

边3-2:到顶点2的距离是z.

z > xz >y.

所以我们既然无法避免在先于顶点2之前就将边7-2和边7-1当做废边(贪心算法),所以我们可以

采取更新的方式来在优先队列Q中维护到某个顶点的最短距离.

换句话说,我们对某个顶点,只在Q中维护一条边,就是当前已知连着它的最轻边.

由此,我们避免了将所有的边都加入优先队列Q,从而使得最差情况下Q的操作与图的顶点数V 成线性渐进:O(V ).

但一般的优先队列只提供了入队(enqueue)和出队(dequeue)操作,要更新到某个顶点的最短距离,我们需要高效地在优先队列中访问这个顶点.

那么按照一般优先队列的方式,比如jdk中的优先队列,它会是这样:

    private int indexOf(Object o) {
if (o != null) {
for (int i = 0; i < size; i++)
if (o.equals(queue[i]))
return i;
}
return -1;
}

这虽然可以帮助我们在队列中找到元素,但这显然不高效.

有没有一种办法可以按常量时间来找到所需元素?

答案是:索引(index),由此:

我们需要一个对顶点在队列中的索引.

这可以保证我们以常量的时间在队列中找到顶点.

关于索引式优先队列及实现可以参考:带索引的优先队列

实现分析

万事具备,那么我们对某顶点的邻接点(或邻接的边)的遍历和处理就会是这样:

    private void search(int src) {
IndexPriorityQueue<Double> q = indexCrossingEdges;
visited[src] = true;
//遍历邻接的边
for(Edge edge:g.vertices()[src].Adj) {
WeightedEdge we = (WeightedEdge)edge;
int to = we.to;
if(visited[to])
continue;
//到顶点to的距离可以改善了
if(we.weight < distanceTo[to]) {
distanceTo[to] = we.weight;
lastEdgeTo[to] = we;
if(q.contains(to)) {
//我们在队列中只维护一条到某个顶点的距离
//在我们可以改善到这个顶点的距离是,我们更新它
q.decreaseKey(to, distanceTo[to]);
}else {
q.offer(to, distanceTo[to]);
}
}
}
}
}

算法一开始的时候,我们从源点v出发,将其加入队列Q,然后开始进行mst的建立工作:

    private void mst(int v) {
IndexPriorityQueue<Double> q = indexCrossingEdges;
distanceTo[v] = 0.0d;
q.offer(v, distanceTo[v]);
while (!q.isEmpty()) {
int src = q.poll();
search(src);
}
}

完整实现

普利姆算法的完整eager实现如下,其中的一些类和字段不明白的

请参考:普利姆算法的lazy实现

/**
* Created by 浩然 on 4/21/15.
*/
public class EagerPrim extends LazyPrim {
protected WeightedEdge[] lastEdgeTo;
/**
* 索引式优先队列,用于维护crossing edges
* 用于在eager普利姆算法中高效返回最轻边并支持decrease-key操作
*/
protected IndexPriorityQueue<Double> indexCrossingEdges; public EagerPrim(WeightedUndirectedGraph g) {
super(g);
} @Override
protected void resetMemo() {
super.resetMemo();
lastEdgeTo = new WeightedEdge[g.vertexCount()];
//重置优先队列
indexCrossingEdges = new IndexPriorityQueue<>();
} private void setupMST() {
for (int v = 0; v < lastEdgeTo.length; v++) {
WeightedEdge we = lastEdgeTo[v];
if (we != null) {
mst.offer(we);
mstWeight += we.weight;
}
}
} /**
* eager-prim算法,时间复杂度为最差O(ElogV)
*/
@Override
public void performMST() {
resetMemo();
//对图中的所有顶点进行遍历,可以找出MSF(最小生成森林) //这里我们假设图是连通的,所以可以找出一棵MST
mst(0);
setupMST();
} private void mst(int v) {
IndexPriorityQueue<Double> q = indexCrossingEdges;
distanceTo[v] = 0.0d;
q.offer(v, distanceTo[v]);
while (!q.isEmpty()) {
int src = q.poll();
search(src);
}
} private void search(int src) {
IndexPriorityQueue<Double> q = indexCrossingEdges;
visited[src] = true;
//遍历邻接的边
for(Edge edge:g.vertices()[src].Adj) {
WeightedEdge we = (WeightedEdge)edge;
int to = we.to;
if(visited[to])
continue;
//到顶点to的距离可以改善了
if(we.weight < distanceTo[to]) {
distanceTo[to] = we.weight;
lastEdgeTo[to] = we;
if(q.contains(to)) {
//我们在队列中只维护一条到某个顶点的距离
//在我们可以改善到这个顶点的距离是,我们更新它
q.decreaseKey(to, distanceTo[to]);
}else {
q.offer(to, distanceTo[to]);
}
}
}
}
}

时间复杂度

由于避免了对废弃边的访问,所以在优先队列中最多维护V条记录.

优先队列的操作耗时O(logV ).

遍历所有边的操作耗时O(E ),则整体耗时O(ElogV)

最小生成树-普利姆算法eager实现的更多相关文章

  1. 最小生成树-普利姆算法lazy实现

    算法描述 lazy普利姆算法的步骤: 1.从源点s出发,遍历它的邻接表s.Adj,将所有邻接的边(crossing edges)加入优先队列Q: 2.从Q出队最轻边,将此边加入MST. 3.考察此边的 ...

  2. 最小生成树-普利姆(Prim)算法

    最小生成树-普利姆(Prim)算法 最小生成树 概念:将给出的所有点连接起来(即从一个点可到任意一个点),且连接路径之和最小的图叫最小生成树.最小生成树属于一种树形结构(树形结构是一种特殊的图),或者 ...

  3. 图论---最小生成树----普利姆(Prim)算法

    普利姆(Prim)算法 1. 最小生成树(又名:最小权重生成树) 概念:将给出的所有点连接起来(即从一个点可到任意一个点),且连接路径之和最小的图叫最小生成树.最小生成树属于一种树形结构(树形结构是一 ...

  4. POJ-2421-Constructing Roads(最小生成树 普利姆)

    Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 26694   Accepted: 11720 Description The ...

  5. 普利姆算法(prim)

    普利姆算法(prim)求最小生成树(MST)过程详解 (原网址) 1 2 3 4 5 6 7 分步阅读 生活中最小生成树的应用十分广泛,比如:要连通n个城市需要n-1条边线路,那么怎么样建设才能使工程 ...

  6. 图->连通性->最小生成树(普里姆算法)

    文字描述 用连通网来表示n个城市及n个城市间可能设置的通信线路,其中网的顶点表示城市,边表示两城市之间的线路,赋于边的权值表示相应的代价.对于n个定点的连通网可以建立许多不同的生成树,每一棵生成树都可 ...

  7. 最小生成树---普里姆算法(Prim算法)和克鲁斯卡尔算法(Kruskal算法)

    普里姆算法(Prim算法) #include<bits/stdc++.h> using namespace std; #define MAXVEX 100 #define INF 6553 ...

  8. 算法与数据结构(五) 普利姆与克鲁斯卡尔的最小生成树(Swift版)

    上篇博客我们聊了图的物理存储结构邻接矩阵和邻接链表,然后在此基础上给出了图的深度优先搜索和广度优先搜索.本篇博客就在上一篇博客的基础上进行延伸,也是关于图的.今天博客中主要介绍两种算法,都是关于最小生 ...

  9. HDU 1879 继续畅通工程 (Prim(普里姆算法)+Kruskal(克鲁斯卡尔))

    继续畅通工程 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Sub ...

随机推荐

  1. mysql -> 索引_07

    索引与sql语句优化 压力测试对比

  2. 排序与相关性(Sorting and Relevance)

    本文翻译自Elasticsearch官方指南的Sorting and Relevance一章的第一节. 原文地址:http://www.elastic.co/guide/en/elasticsearc ...

  3. 窗口启用/禁用功能函数EnableWindow的使用

    在非MFC环境中如何使控件或者窗口禁用呢?起初是想通过发送消息来实现,但找来找去都木有找到控件禁用的消息(也是是博主木有找到的缘故),所以只能另辟蹊径,使用 EnableWindow这个函数, 该函数 ...

  4. 回归模型效果评估系列2-MAE、MSE、RMSE、MAPE(MAPD)

      MAE.MSE.RMSE.MAPE(MAPD)这些都是常见的回归预测评估指标,重温下它们的定义和区别以及优缺点吧     MAE(Mean Absolute Error) 平均绝对误差      ...

  5. 通过field:global给子元素添加css样式

    {dede:arclist row=5 typeid=200} <li [field:global runphp=’yes’ name=autoindex](@me==1)?@me=”class ...

  6. sqlserver游标概念与实例全面解说

    引言 我们先不讲游标的什么概念,步骤及语法,先来看一个例子:   ?????? 表一 OriginSalary????????????????????????????????????????????? ...

  7. plsql中做计划任务

    第一步: 1.  打开PLSQL后,选择节点jobs,右键新建,弹出界面后再what值中填写需要做计划的存储名加分号结束,如门诊收入存储PH_ClinicIncome(1):其中1代表医疗机构代码 间 ...

  8. HTTPS、SPDY和HTTP/2的性能比较

    http://www.infoq.com/cn/news/2015/02/https-spdy-http2-comparison/ https://segmentfault.com/a/1190000 ...

  9. 《精通Python设计模式》学习行为型之责任链模式

    感觉是全新的学习了. 因为在以前的工作中,并没有有意识的去运用哪一种编程模式. 以后要注意的了. 这才是高手之路呀~ class Event: def __init__(self, name): se ...

  10. Loadrunner参数化如何在记事本中将参数值显示超过100个参数值

    Loadrunner参数化如何在记事本中将参数值显示超过100个参数值 1.loadrunner的参数值没有最大的限度, 可以修改C:\Program Files\HP\LoadRunner\conf ...