USACO 6.5 Checker Challenge
Checker Challenge
Examine the 6x6 checkerboard below and note that the six checkers are arranged on the board so that one and only one is placed in each row and each column, and there is never more than one in any diagonal. (Diagonals run from southeast to northwest and southwest to northeast and include all diagonals, not just the major two.)
Column
1 2 3 4 5 6
-------------------------
1 | | O | | | | |
-------------------------
2 | | | | O | | |
-------------------------
3 | | | | | | O |
-------------------------
4 | O | | | | | |
-------------------------
5 | | | O | | | |
-------------------------
6 | | | | | O | |
-------------------------
The solution shown above is described by the sequence 2 4 6 1 3 5, which gives the column positions of the checkers for each row from 1 to 6:
| ROW | 1 | 2 | 3 | 4 | 5 | 6 |
| COLUMN | 2 | 4 | 6 | 1 | 3 | 5 |
This is one solution to the checker challenge. Write a program that finds all unique solution sequences to the Checker Challenge (with ever growing values of N). Print the solutions using the column notation described above. Print the first three solutions in numerical order, as if the checker positions form the digits of a large number, and then a line with the total number of solutions.
Special note: the larger values of N require your program to be especially efficient. Do not precalculate the value and print it (or even find a formula for it); that's cheating. Work on your program until it can solve the problem properly. If you insist on cheating, your login to the USACO training pages will be removed and you will be disqualified from all USACO competitions. YOU HAVE BEEN WARNED.
TIME LIMIT: 1 CPU second
PROGRAM NAME: checker
INPUT FORMAT
A single line that contains a single integer N (6 <= N <= 13) that is the dimension of the N x N checkerboard.
SAMPLE INPUT (file checker.in)
6
OUTPUT FORMAT
The first three lines show the first three solutions found, presented as N numbers with a single space between them. The fourth line shows the total number of solutions found.
SAMPLE OUTPUT (file checker.out)
2 4 6 1 3 5
3 6 2 5 1 4
4 1 5 2 6 3
4
HINTS (use them carefully!)
HINT 1 HINT 2 HINT 3 HINT 4 HINT 5 HINT 6
——————————————————————题解
那么USACO这个阶梯式题库的选题人大概是觉得
你前面做过的网络流啊,最小割啊,字典树啊,tarjan啊,二分图啊,最小环啊,欧拉路啊,记搜啊,各种各样奇怪的dp,各种各样奇怪的剪枝
都没n皇后难,n皇后才是最难的,n皇后是坠吼的!
【冷漠脸】
比以前加了个二进制优化
/*
LANG: C++
PROG: checker
*/
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
#define siji(i,x,y) for(int i=(x) ; i <= (y) ; ++i)
#define xiaosiji(i,x,y) for(int i = (x) ; i < (y); ++i)
#define gongzi(j,x,y) for(int j = (x) ; j >= (y) ; --j)
#define ivorysi
#define mo 11447
#define eps 1e-8
#define o(x) ((x)*(x))
using namespace std;
typedef long long ll;
int LeftDiagonal,RightDiagonal,Column;
int rec[];
int n,ans,cnt;
void Print() {
siji(i,,n) {
printf("%d%c",rec[i]," \n"[i==n]);
}
}
void dfs(int k) {
if(k>n) {
++ans;
if(cnt<) {++cnt;Print();}
}
siji(i,,n){
if((LeftDiagonal>>(k+i)&)== && (RightDiagonal>>(k+n-i+)&)== && (Column>>i&)== ){
//&的优先级比==低??
rec[k]=i;
LeftDiagonal|=(<<(k+i));
RightDiagonal|=(<<(k+n-i+));
Column|=(<<i);
dfs(k+);
LeftDiagonal^=(<<(k+i));
RightDiagonal^=(<<(k+n-i+));
Column^=(<<i);
}
}
}
void solve() {
scanf("%d",&n);
dfs();
printf("%d\n",ans);
}
int main(int argc, char const *argv[])
{
#ifdef ivorysi
freopen("checker.in","r",stdin);
freopen("checker.out","w",stdout);
#else
freopen("f1.in","r",stdin);
//freopen("f1.out","w",stdout);
#endif
solve();
return ;
}
USACO 6.5 Checker Challenge的更多相关文章
- USACO training course Checker Challenge N皇后 /// oj10125
...就是N皇后 输出前三种可能排序 输出所有可能排序的方法数 vis[0][i]为i点是否已用 vis[1][m+i]为i点副对角线是否已用 m+i 为从左至右第 m+i 条副对角线 vis[1] ...
- 『嗨威说』算法设计与分析 - 回溯法思想小结(USACO-cha1-sec1.5 Checker Challenge 八皇后升级版)
本文索引目录: 一.回溯算法的基本思想以及个人理解 二.“子集和”问题的解空间结构和约束函数 三.一道经典回溯法题点拨升华回溯法思想 四.结对编程情况 一.回溯算法的基本思想以及个人理解: 1.1 基 ...
- USACO1.5 Checker Challenge(类n皇后问题)
B - B Time Limit:1000MS Memory Limit:16000KB 64bit IO Format:%lld & %llu Description E ...
- TZOJ 3522 Checker Challenge(深搜)
描述 Examine the 6x6 checkerboard below and note that the six checkers are arranged on the board so th ...
- USACO 1.5.4 Checker Challenge跳棋的挑战(回溯法求解N皇后问题+八皇后问题说明)
Description 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行,每列,每条对角线(包括两条主对角线的所有对角线)上都至多有一个棋子. 列号 0 1 2 3 4 5 6 ...
- Checker Challenge跳棋的挑战(n皇后问题)
Description 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行,每列,每条对角线(包括两条主对角线的所有对角线)上都至多有一个棋子. 列号 0 1 2 3 4 5 6 ...
- USACO 完结的一些感想
其实日期没有那么近啦……只是我偶尔还点进去造成的,导致我没有每一章刷完的纪念日了 但是全刷完是今天啦 讲真,题很锻炼思维能力,USACO保持着一贯猎奇的题目描述,以及尽量不用高级算法就完成的题解……例 ...
- ACM-Checker Challenge
题目描述:Checker Challenge 1000(ms) 10000(kb) 20 / 90 Examine the 6x6 checkerboard below and note tha ...
- N皇后问题2
Description Examine the checkerboard below and note that the six checkers are arranged on the board ...
随机推荐
- Java基础-DButils工具类(QueryRunner)详解
Java基础-DButils工具类(QueryRunner)详解 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 如果只使用JDBC进行开发,我们会发现冗余代码过多,为了简化JDBC ...
- UITableViewCell在非Nib及Cell重用下设置CellStyle
在UITableViewController(实现了UITableViewDataSource)下需要实现 - (UITableViewCell *)tableView:(UITableView *) ...
- 我购买byd的几点逻辑
1.伯克希尔哈撒韦长期看好byd不是无道理的,每次转型都是那么的成功,说明管理层很好. 2.2015年6月员工持股计划均价55元,目前48元. 3.新能源汽车龙头. 4.云轨解决了小城市建设地铁过于浪 ...
- 二分算法的应用——Codevs 1766 装果子
#include<iostream> #include<cstdio> using namespace std; + ; typedef long long LL; LL a[ ...
- 浅谈欧几里得算法求最大公约数(GCD)的原理及简单应用
一.欧几里得算法及其证明 1.定义: 欧几里得算法又称辗转相除法,用于求两数的最大公约数,计算公式为GCD(a,b)=GCD(b,a%b): 2.证明: 设x为两整数a,b(a>=b)的最大公约 ...
- 【译】第三篇 Integration Services:增量加载-Adding Rows
本篇文章是Integration Services系列的第三篇,详细内容请参考原文. 增量加载是什么增量加载仅加载与先前加载差异的.差异包括:->新增的行->更新的行->删除的行通过 ...
- IIS8.0 配置应用程序初始化功能
IIS进程回收后,第一次访问会超级慢,这对于用户是不能接受的,怎么解决这个问题? 我们不能设置IIS不回收进程,因为这样可能会导致IIS内存泄漏.有效的方法时,尽量在业务空闲时间回收进程,回收后立刻预 ...
- 图片懒加载之lazyload.js插件使用
简介 lazyload.js用于长页面图片的延迟加载,视口外的图片会在窗口滚动到它的位置时再进行加载,这是与预加载相反的. 使用 lazyload依赖与jquery.所以先引入jquery和lazyl ...
- Dream------Hadoop--HDFS的设计
HDFS是为以流式数据访问模式存储超大文件而设计的文件系统. 流式数据访问 HDFS建立在这样一个思想上:一次写入.多次读取模式是最高效的.一个数据集通常由数据源生成或复制, 接着在此基础上进行各 ...
- 配置子目录Web.config使其消除继承,iis7.0设置路由
iis7.0设置路由 ,url转向,伪静态 <system.webServer> <modules runAllManagedModulesForAllRequests=& ...