【洛谷题解】P2303 [SDOi2012]Longge的问题
题目传送门:链接。
能自己推出正确的式子的感觉真的很好!
题意简述:
求\(\sum_{i=1}^{n}gcd(i,n)\)。\(n\leq 2^{32}\)。
题解:
我们开始化简式子:
\(\sum_{i=1}^{n}gcd(i,n)\)
\(=\sum_{j=1}^{n}\left(j\times\sum_{i=1}^{n}\left[gcd(i,n)=j\right]\right)\)
\(=\sum_{j=1}^{n}\left(j\times\sum_{i=1}^{n}\left[gcd(i/j,n/j)=1\right]\left(j|i,j|n\right)\right)\)
\(=\sum_{j=1}^{n}\left(j\times\varphi\left(n/j\right)\left(j|n\right)\right)\)
\(=\sum_{j|n}\left(j\times\varphi\left(n/j\right)\right)\)
到这里就可以直接计算了。
但是还可以进一步化简!(以下的\(p\)为质数)
\(\sum_{j|n}(j\times\varphi(n/j))\)
\(=\sum_{j|n}(n/j\times\varphi\left(j\right))\)
\(=\sum_{j|n}(n/j\times(j\cdot\prod_{p|j}\frac{p-1}{p}))\)
\(=\sum_{j|n}(n\cdot\prod_{p|j}\frac{p-1}{p})\)
\(=n\times\sum_{j|n}\prod_{p|j}\frac{p-1}{p}\)
接下来我们令\(n=p_1^{b_1}p_2^{b_2}p_3^{b_3}\cdots p_k^{b_k}\),并定义\(f_i=\frac{p_i-1}{p_i}\)。
那么\(n\)的因子\(j\)可以表示为:\(j=p_1^{c_1}p_2^{c_2}p_3^{c_3}\cdots p_k^{c_k}\),满足\(0\leq c_i\leq b_i\)。
那么\(\prod_{p|j}\frac{p-1}{p}=\prod_{i=1}^kf_i[c_i>0]\)。
我们观察一类\(\prod_{i=1}^kf_i[c_i>0]\)相等的\(j\),它们必要满足在\(i\)相等的情况下,\(c_i\)同时大于0或\(c_i\)同时等于0。
那么这一类的\(j\)有多少个呢?如果这类\(j\)有质因子\(p_{q_1},p_{q_2},p_{q_3},\cdots,p_{q_g}\)。
那么这类\(j\)的答案为\(\prod_{i=1}^gf_{q_i}\),而个数为\(\prod_{i=1}^gb_{q_i}\)。
\(b_i\)就是原来\(n\)的质因数分解的指数。
那么对答案的贡献为:\(\prod_{i=1}^g\chi_{q_i}\)。这里\(\chi_i=f_i\cdot b_i\)。
发现每一个质因子的贡献都是独立的,那么最后我们枚举\(n\)的每一个质因子取不取,得到最后的答案:\(n\cdot\prod_{i=1}^{k}(\chi_i+1)\)。
举个例子:如果\(n\)只有\(3\)个质因子,那么答案为\(n\cdot(1+\chi_1+\chi_2+\chi_3+\chi_1\chi_2+\chi_1\chi_3+\chi_2\chi_3+\chi_1\chi_2\chi_3)\)。
显然可以化简为:\(n\cdot(\chi_1+1)\cdot(\chi_2+1)\cdot(\chi_3+1)\)。
当然可以类比到质因数更多的情况。
总之,答案就是:\(n\cdot\prod_{i=1}^{k}\frac{b_i\cdot p_i-b_i+p_i}{p_i}\)。
代码:
#include<cstdio>
long long n;
long long f(){
long long ans=n; long long i;
for(i=;i*i<=n;++i) if(n%i==){
int b=;
while(n%i==) ++b,n/=i;
ans/=i;
ans*=b*i-b+i;
} if(n>) ans/=n, ans*=n+n-;
return ans;
}
int main(){
scanf("%lld",&n);
printf("%lld",f());
return ;
}
【洛谷题解】P2303 [SDOi2012]Longge的问题的更多相关文章
- 洛谷 P2303 [SDOi2012]Longge的问题 解题报告
P2303 [SDOi2012]Longge的问题 题目背景 SDOi2012 题目描述 Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数\(N\),你需要 ...
- 洛谷 题解 UVA572 【油田 Oil Deposits】
这是我在洛谷上的第一篇题解!!!!!!!! 这个其实很简单的 我是一只卡在了结束条件这里所以一直听取WA声一片,详细解释代码里见 #include<iostream> #include&l ...
- 洛谷 题解 P1600 【天天爱跑步】 (NOIP2016)
必须得说,这是一道难题(尤其对于我这样普及组205分的蒟蒻) 提交结果(NOIP2016 天天爱跑步): OJ名 编号 题目 状态 分数 总时间 内存 代码 / 答案文件 提交者 提交时间 Libre ...
- 洛谷题解P4314CPU监控--线段树
题目链接 https://www.luogu.org/problemnew/show/P4314 https://www.lydsy.com/JudgeOnline/problem.php?id=30 ...
- 洛谷P2303 [SDOi2012]Longge的问题
题目背景 SDOi2012 题目描述 Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). ...
- 洛谷P2303 [SDOi2012] Longge的问题 数论
看懂了题解,太妙了TT但是想解释的话可能要很多数学公式打起来太麻烦了TT所以我就先只放代码具体推演的过程我先写在纸上然后拍下来做成图片放上来算辣quq 好的那我先滚去做题了做完这题就把题解放上来.因为 ...
- 洛谷题解 CF777A 【Shell Game】
同步题解 题目翻译(可能有童鞋没读懂题面上的翻译) 给你三张牌0,1,2. 最初选一张,然后依次进行n次交换,交换规则为:中间一张和左边的一张,中间一张和右边一张,中间一张和左边一张...... 最后 ...
- 洛谷题解 CF807A 【Is it rated?】
同步题解 题目 好吧,来说说思路: 1.先读入啦~(≧▽≦)/~啦啦啦 2.判断a[i]赛前赛后是否同分数,如果分数不同,则输出,return 0 . 3.如果同分数,则判断a[i]赛前(或赛后)是否 ...
- 洛谷题解 P1138 【第k小整数】
蒟蒻发题解了 说明:此题我用的方法为桶排(我翻了翻有人用了桶排只不过很难看出来,可能有些重复的,这个题只是作为一个专门的桶排来讲解吧) (不会算抄袭吧 ‘QWaWQ’) 简单来说(会的人跳过就行): ...
随机推荐
- Qt4程序在windows平台下打包发布
一.打包成绿色版 将源码编译成release版,运行*.exe文件,提示缺少*.dll,在Qt安装目录中找到相应的dll文件(一般在bin目录下),将dll文件复制到exe文件目录下即可. 二.打包成 ...
- url基础知识
浏览器通过url访问服务器步骤 ①浏览器解析出url中的服务器名称 ②浏览器将服务器名称解析成ip(DNS解析) ③浏览器解析出url中的服务器端口(如果有端口的话) ④浏览器建立和web服务器的TC ...
- 关于UIInterfaceOrientation的一个bug
在ios中获取设备当前方向的枚举有UIInterfaceOrientation和UIDeviceOrientation ,前者包含枚举 Unknown//未知 Portrait//屏幕竖直,home键 ...
- php高效遍历文件夹、高效读取文件
/** * PHP高效遍历文件夹(大量文件不会卡死) * @param string $path 目录路径 * @param integer $level 目录深度 */ function fn_sc ...
- 解题:POI 2007 Tourist Attractions
题面 事实上这份代码在洛谷过不去,因为好像要用到一些压缩空间的技巧,我并不想(hui)写(捂脸) 先预处理$1$到$k+1$这些点之间相互的最短路和它们到终点的最短路,并记录下每个点能够转移到时的状态 ...
- 使用EntitysCodeGenerate
http://bbs.csdn.net/topics/360256700 public DataSet xxx(DateTime start, DateTime end, string type) ...
- 字符串连接比较(std::unique_ptr实现)
比较代码之间可能相差大,可是速度相差很大,而且目的在于测试unique_ptr使用...; C/C++: #include <iostream> std::unique_ptr<ch ...
- HDU--4607
题目: Park Visit 原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=4607 分析:求树的直径.所谓树的直径,指的是一棵树里任意两点之间的最远距 ...
- nginx让用户通过用户名密码认证访问web页面
在使用nginx转发的时候,要进行一次用户身份的确认. 1)通过htpasswd命令生成用户名及对应密码数据库文件. [root@bgs-5p173-wangwenting ~]# htpasswd ...
- NDKr10的各种BUG
NDKr10有几个BUG,所以推荐使用NDKr9 bug1:不支持srand() bug2: 链接异常,找不到stpcpy()