negative log likelihood
文章目录
negative log likelihood
似然函数(likelihood function)
Overview
Definition
离散型概率分布(Discrete probability distributions)
连续型概率分布(Continuous probability distributions)
最大似然估计(Maximum Likelihood Estimation,MLE)
对数似然(log likelihood)
负对数似然(negative log-likelihood)
Reference
似然函数(likelihood function)
Overview
在机器学习中,似然函数是一种关于模型中参数的函数。“似然性(likelihood)”和"概率(probability)"词意相似,但在统计学中它们有着完全不同的含义:概率用于在已知参数的情况下,预测接下来的观测结果;似然性用于根据一些观测结果,估计给定模型的参数可能值。

Probability is used to describe the plausibility of some data, given a value for the parameter. Likelihood is used to describe the plausibility of a value for the parameter, given some data.

​ —from wikipedia[3] ^[3]
[
3]

其数学形式表示为:

假设X XX是观测结果序列,它的概率分布fx f_{x}f
x

依赖于参数θ \thetaθ,则似然函数表示为


L(θ∣x)=fθ(x)=Pθ(X=x) L(\theta|x)=f_{\theta}(x)=P_{\theta}(X=x)
L(θ∣x)=f
θ

(x)=P
θ

(X=x)

Definition
似然函数针对**离散型概率分布(Discrete probability distributions)和连续型概率分布(Continuous probability distributions)**的定义通常不同.

离散型概率分布(Discrete probability distributions)
假设X XX是离散随机变量,其概率质量函数p pp依赖于参数θ \thetaθ,则有


L(θ∣x)=pθ(x)=Pθ(X=x) L(\theta|x)=p_{\theta}(x)=P_{\theta}(X=x)
L(θ∣x)=p
θ

(x)=P
θ

(X=x)

L(θ∣x) L(\theta|x)L(θ∣x)为参数θ \thetaθ的似然函数,x xx为随机变量X XX的输出.

Sometimes the probability of "the value of for the parameter value " is written as P(X = x | θ) or P(X = x; θ).

连续型概率分布(Continuous probability distributions)
假设X XX是连续概率分布的随机变量,其密度函数(density function)f ff依赖于参数θ \thetaθ,则有

L(θ∣x)=fθ(x) L(\theta|x)=f_{\theta}(x)
L(θ∣x)=f
θ

(x)

最大似然估计(Maximum Likelihood Estimation,MLE)
假设每个观测结果x xx是独立同分布的,通过似然函数L(θ∣x) L(\theta|x)L(θ∣x)求使观测结果X XX发生的概率最大的参数θ \thetaθ,即argmaxθf(X;θ) argmax_{\theta}f(X;\theta)argmax
θ

f(X;θ) 。

在“模型已定,参数未知”的情况下,使用最大似然估计算法学习参数是比较普遍的。

对数似然(log likelihood)
由于对数函数具有单调递增的特点,对数函数和似然函数具有同一个最大值点。取对数是为了方便计算极大似然估计,MLE中直接求导比价困难,通常先取对数再求导,找到极值点。

负对数似然(negative log-likelihood)
实践中,softmax函数通常和负对数似然(negative log-likelihood,NLL)一起使用,这个损失函数非常有趣,如果我们将其与softmax的行为相关联起来一起理解.首先,让我们写下我们的损失函数:

L(y)=−log(y) L(y)=-log(y)
L(y)=−log(y)

回想一下,当我们训练一个模型时,我们渴望能够找到使得损失函数最小的一组参数(在一个神经网络中,参数指权重weights和偏移biases).

对数函数如下图红线所示:

由于是对概率分布求对数,概率p pp的值为0≤p≤1 0\leq{p}\leq10≤p≤1,取对数后为红色线条在[0,1] [0,1][0,1]区间中的部分,再对其取负数,得到负对数似然函数如下图所示:

我们希望得到的概率越大越好,因此概率越接近于1,则函数整体值越接近于0,即使得损失函数取到最小值。

最大似然估计的一般步骤如下:
(1) 写出似然函数;
(2) 对似然函数取对数,得到对数似然函数;
(3) 求对数似然函数的关于参数组的偏导数,并令其为0,得到似然方程组;
(4) 解似然方程组,得到参数组的值.

Reference
[1]王海良,李卓恒,林旭鸣.智能问答与深度学习[M].北京:电子工业出版社,2019:19-20.

[2]Lj Miranda.Understanding softmax and the negative log-likelihood.2017.

​ [link]https://ljvmiranda921.github.io/notebook/2017/08/13/softmax-and-the-negative-log-likelihood/

[3]wikipedia-likelihood function

​ [link]https://en.wikipedia.org/wiki/Likelihood_function#Log-likelihood
---------------------
作者:不一样的雅兰酱
来源:CSDN
原文:https://blog.csdn.net/silver1225/article/details/88914652
版权声明:本文为博主原创文章,转载请附上博文链接!

负对数似然(negative log-likelihood)的更多相关文章

  1. 挑子学习笔记:对数似然距离(Log-Likelihood Distance)

    转载请标明出处:http://www.cnblogs.com/tiaozistudy/p/log-likelihood_distance.html 本文是“挑子”在学习对数似然距离过程中的笔记摘录,文 ...

  2. 【MLE】最大似然估计Maximum Likelihood Estimation

    模型已定,参数未知 已知某个随机样本满足某种概率分布,但是其中具体的参数不清楚,参数估计就是通过若干次试验,观察其结果,利用结果推出参数的大概值.最大似然估计是建立在这样的思想上:已知某个参数能使这个 ...

  3. 二次代价函数、交叉熵(cross-entropy)、对数似然代价函数(log-likelihood cost)(04-1)

    二次代价函数 $C = \frac{1} {2n} \sum_{x_1,...x_n} \|y(x)-a^L(x) \|^2$ 其中,C表示代价函数,x表示样本,y表示实际值,a表示输出值,n表示样本 ...

  4. 归纳学习(Inductive Learning),直推学习(Transductive Learning),困难负样本(Hard Negative)

    归纳学习(Inductive Learning): 顾名思义,就是从已有训练数据中归纳出模式来,应用于新的测试数据和任务.我们常用的机器学习模式就是归纳学习. 直推学习(Transductive Le ...

  5. 似然和对数似然Likelihood & LogLikelihood

    One of the most fundamental concepts of modern statistics is that of likelihood. In each of the disc ...

  6. 朴素贝叶斯-对数似然Python实现-Numpy

    <Machine Learning in Action> 为防止连续乘法时每个乘数过小,而导致的下溢出(太多很小的数相乘结果为0,或者不能正确分类) 训练: def trainNB0(tr ...

  7. sql server 对数运算函数log(x)和log10(x)

    --LOG(x)返回x的自然对数,x相对于基数e的对数 --LOG10(x)返回x的基数为10的对数 示例:select LOG(3),LOG(6),LOG10(1),LOG10(100),LOG10 ...

  8. 高斯混合模型(GMM)

    复习: 1.概率密度函数,密度函数,概率分布函数和累计分布函数 概率密度函数一般以大写“PDF”(Probability Density Function),也称概率分布函数,有的时候又简称概率分布函 ...

  9. [白话解析] 深入浅出 极大似然估计 & 极大后验概率估计

    [白话解析] 深入浅出极大似然估计 & 极大后验概率估计 0x00 摘要 本文在少用数学公式的情况下,尽量仅依靠感性直觉的思考来讲解 极大似然估计 & 极大后验概率估计,并且从名著中找 ...

随机推荐

  1. 洛谷 P1344 追查坏牛奶Pollutant Control —— 最小割

    题目:https://www.luogu.org/problemnew/show/P1344 就是求最小割: 但是还要边数最小,所以把边权都*1001+1,这样原来流量部分是*1001,最大流一样的不 ...

  2. 字节流与字符流简单操作(OutputStream、InputStream、Writer、Reader)

    操作流程 使用File类打开一个文件 通过字节流或者字符流的子类.指定输出的位置. 进行读/写操作 关闭输入/出 字节流与字符流 在java.io包中操作文件内容主要有两大类:字节流字符流.两大类分为 ...

  3. bzoj 3144 [Hnoi2013]切糕【最小割+dinic】

    都说了是'切'糕所以是最小割咯 建图: 每个点向下一层连容量为这个点的val的边,S向第一层连容量为inf的边,最后一层向T连容量为自身val的边,即割断这条边相当于\( f(i,j) \)选择了当前 ...

  4. Linux基本命令—mkfs/mount/umount/wget/yes/make/passwd

    mkfs:用来在特定的分区建立Linux文件系统,是make filesystem的缩写. 例子:mkfs .ext3 /dev/mmcblk0p1      //把该设备格式化成ext3文件系统 m ...

  5. nginx https反向代理tomcat

    Context体现在server.xml中的Host里的<Context>元素,它由Context接口定义.每个<Context>元素代表了运行在虚拟主机上的单个Web应用. ...

  6. Android中图片压缩(质量压缩和尺寸压缩)

    关于Android 图片压缩的学习: 自己总结分为质量压缩和像素压缩.质量压缩即:将Bitmap对象保存到对应路径下是所占用的内存减小,但是当你重新读取压缩后的file为Bitmap时,它所占用的内存 ...

  7. python常用的装饰器

    一.为程序添加时间类的装饰器二.验证用户是否等陆 #.为函数添加统计时间的装饰器: import time def timeer(func): def inner(): starttime=time. ...

  8. python爬取网页图片(二)

    从一个网页爬取图片已经解决,现在想要把这个用户发的图片全部爬取. 首先:先找到这个用户的发帖页面: http://www.acfun.cn/u/1094623.aspx#page=1 然后从这个页面中 ...

  9. [ZPG TEST 108] blockenemy【树形dp】

    T3:blockenemy blockenemy.pas/in/out 128M 1s 你在玩电子游戏的时候遇到了麻烦...... 你玩的游戏是在一个虚拟的城市里进行,这个城市里有n个点,都从0~n- ...

  10. Visual studio docker build no such file or directory

    在我构建新的镜像的时候, 发生 了  no such file or directory 的错误.  这个错误找了半天, 没头绪,项目结构是这样的: WebApplication1 建立在根目录下,是 ...