negative log likelihood
文章目录
negative log likelihood
似然函数(likelihood function)
Overview
Definition
离散型概率分布(Discrete probability distributions)
连续型概率分布(Continuous probability distributions)
最大似然估计(Maximum Likelihood Estimation,MLE)
对数似然(log likelihood)
负对数似然(negative log-likelihood)
Reference
似然函数(likelihood function)
Overview
在机器学习中,似然函数是一种关于模型中参数的函数。“似然性(likelihood)”和"概率(probability)"词意相似,但在统计学中它们有着完全不同的含义:概率用于在已知参数的情况下,预测接下来的观测结果;似然性用于根据一些观测结果,估计给定模型的参数可能值。

Probability is used to describe the plausibility of some data, given a value for the parameter. Likelihood is used to describe the plausibility of a value for the parameter, given some data.

​ —from wikipedia[3] ^[3]
[
3]

其数学形式表示为:

假设X XX是观测结果序列,它的概率分布fx f_{x}f
x

依赖于参数θ \thetaθ,则似然函数表示为


L(θ∣x)=fθ(x)=Pθ(X=x) L(\theta|x)=f_{\theta}(x)=P_{\theta}(X=x)
L(θ∣x)=f
θ

(x)=P
θ

(X=x)

Definition
似然函数针对**离散型概率分布(Discrete probability distributions)和连续型概率分布(Continuous probability distributions)**的定义通常不同.

离散型概率分布(Discrete probability distributions)
假设X XX是离散随机变量,其概率质量函数p pp依赖于参数θ \thetaθ,则有


L(θ∣x)=pθ(x)=Pθ(X=x) L(\theta|x)=p_{\theta}(x)=P_{\theta}(X=x)
L(θ∣x)=p
θ

(x)=P
θ

(X=x)

L(θ∣x) L(\theta|x)L(θ∣x)为参数θ \thetaθ的似然函数,x xx为随机变量X XX的输出.

Sometimes the probability of "the value of for the parameter value " is written as P(X = x | θ) or P(X = x; θ).

连续型概率分布(Continuous probability distributions)
假设X XX是连续概率分布的随机变量,其密度函数(density function)f ff依赖于参数θ \thetaθ,则有

L(θ∣x)=fθ(x) L(\theta|x)=f_{\theta}(x)
L(θ∣x)=f
θ

(x)

最大似然估计(Maximum Likelihood Estimation,MLE)
假设每个观测结果x xx是独立同分布的,通过似然函数L(θ∣x) L(\theta|x)L(θ∣x)求使观测结果X XX发生的概率最大的参数θ \thetaθ,即argmaxθf(X;θ) argmax_{\theta}f(X;\theta)argmax
θ

f(X;θ) 。

在“模型已定,参数未知”的情况下,使用最大似然估计算法学习参数是比较普遍的。

对数似然(log likelihood)
由于对数函数具有单调递增的特点,对数函数和似然函数具有同一个最大值点。取对数是为了方便计算极大似然估计,MLE中直接求导比价困难,通常先取对数再求导,找到极值点。

负对数似然(negative log-likelihood)
实践中,softmax函数通常和负对数似然(negative log-likelihood,NLL)一起使用,这个损失函数非常有趣,如果我们将其与softmax的行为相关联起来一起理解.首先,让我们写下我们的损失函数:

L(y)=−log(y) L(y)=-log(y)
L(y)=−log(y)

回想一下,当我们训练一个模型时,我们渴望能够找到使得损失函数最小的一组参数(在一个神经网络中,参数指权重weights和偏移biases).

对数函数如下图红线所示:

由于是对概率分布求对数,概率p pp的值为0≤p≤1 0\leq{p}\leq10≤p≤1,取对数后为红色线条在[0,1] [0,1][0,1]区间中的部分,再对其取负数,得到负对数似然函数如下图所示:

我们希望得到的概率越大越好,因此概率越接近于1,则函数整体值越接近于0,即使得损失函数取到最小值。

最大似然估计的一般步骤如下:
(1) 写出似然函数;
(2) 对似然函数取对数,得到对数似然函数;
(3) 求对数似然函数的关于参数组的偏导数,并令其为0,得到似然方程组;
(4) 解似然方程组,得到参数组的值.

Reference
[1]王海良,李卓恒,林旭鸣.智能问答与深度学习[M].北京:电子工业出版社,2019:19-20.

[2]Lj Miranda.Understanding softmax and the negative log-likelihood.2017.

​ [link]https://ljvmiranda921.github.io/notebook/2017/08/13/softmax-and-the-negative-log-likelihood/

[3]wikipedia-likelihood function

​ [link]https://en.wikipedia.org/wiki/Likelihood_function#Log-likelihood
---------------------
作者:不一样的雅兰酱
来源:CSDN
原文:https://blog.csdn.net/silver1225/article/details/88914652
版权声明:本文为博主原创文章,转载请附上博文链接!

负对数似然(negative log-likelihood)的更多相关文章

  1. 挑子学习笔记:对数似然距离(Log-Likelihood Distance)

    转载请标明出处:http://www.cnblogs.com/tiaozistudy/p/log-likelihood_distance.html 本文是“挑子”在学习对数似然距离过程中的笔记摘录,文 ...

  2. 【MLE】最大似然估计Maximum Likelihood Estimation

    模型已定,参数未知 已知某个随机样本满足某种概率分布,但是其中具体的参数不清楚,参数估计就是通过若干次试验,观察其结果,利用结果推出参数的大概值.最大似然估计是建立在这样的思想上:已知某个参数能使这个 ...

  3. 二次代价函数、交叉熵(cross-entropy)、对数似然代价函数(log-likelihood cost)(04-1)

    二次代价函数 $C = \frac{1} {2n} \sum_{x_1,...x_n} \|y(x)-a^L(x) \|^2$ 其中,C表示代价函数,x表示样本,y表示实际值,a表示输出值,n表示样本 ...

  4. 归纳学习(Inductive Learning),直推学习(Transductive Learning),困难负样本(Hard Negative)

    归纳学习(Inductive Learning): 顾名思义,就是从已有训练数据中归纳出模式来,应用于新的测试数据和任务.我们常用的机器学习模式就是归纳学习. 直推学习(Transductive Le ...

  5. 似然和对数似然Likelihood & LogLikelihood

    One of the most fundamental concepts of modern statistics is that of likelihood. In each of the disc ...

  6. 朴素贝叶斯-对数似然Python实现-Numpy

    <Machine Learning in Action> 为防止连续乘法时每个乘数过小,而导致的下溢出(太多很小的数相乘结果为0,或者不能正确分类) 训练: def trainNB0(tr ...

  7. sql server 对数运算函数log(x)和log10(x)

    --LOG(x)返回x的自然对数,x相对于基数e的对数 --LOG10(x)返回x的基数为10的对数 示例:select LOG(3),LOG(6),LOG10(1),LOG10(100),LOG10 ...

  8. 高斯混合模型(GMM)

    复习: 1.概率密度函数,密度函数,概率分布函数和累计分布函数 概率密度函数一般以大写“PDF”(Probability Density Function),也称概率分布函数,有的时候又简称概率分布函 ...

  9. [白话解析] 深入浅出 极大似然估计 & 极大后验概率估计

    [白话解析] 深入浅出极大似然估计 & 极大后验概率估计 0x00 摘要 本文在少用数学公式的情况下,尽量仅依靠感性直觉的思考来讲解 极大似然估计 & 极大后验概率估计,并且从名著中找 ...

随机推荐

  1. CentOS 6.6实现永久修改DNS地址的方法

    本文实例讲述了CentOS 6.6实现永久修改DNS地址的方法. 百牛信息技术bainiu.ltd整理发布于博客园 分享给大家供大家参考,具体如下:1.配置ip地址文件 /etc/sysconfig/ ...

  2. Bootstrap 面板

    基本的面板:<div class="panel panel-default"> <div class="panel-body"> 这是一 ...

  3. Ruby - 创建自己的GEM

    Log 1 创建自己的gem 背景:好奇gem包的用法,首先搞清楚什么是gem包.那我们就先来创建一个自己的gem包. 时间:2014-3-8 环境:Ubuntu + Ruby 1.9.3 记录:Ro ...

  4. 微信公众平台——基础配置——服务器配置:PHP版

    在自己的服务器上新建一个空白php文件,输入以下任一版本的代码,如下: 版本一: <?php $token = "dige1994"; $signature = $_GET[ ...

  5. 让padding不影响容器总长度

    增加CSS属性: box-sizing:border-box; -webkit-box-sizing: border-box; -moz-box-sizing: border-box;

  6. Codeforces 451E Devu and Flowers【容斥原理+卢卡斯定理】

    题意:每个箱子里有\( f[i] \)种颜色相同的花,现在要取出\( s \)朵花,问一共有多少种颜色组合 首先枚举\( 2^n \)种不满足条件的情况,对于一个不被满足的盒子,我们至少拿出\( f[ ...

  7. 洛谷P4216 [SCOI2015]情报传递(树剖+主席树)

    传送门 我们可以进行离线处理,把每一个情报员的权值设为它开始收集情报的时间 那么设询问的时间为$t$,就是问路径上有多少个情报员的权值小于等于$t-c-1$ 这个只要用主席树上树就可以解决了,顺便用树 ...

  8. CF896C Willem, Chtholly and Seniorious(珂朵莉树)

    中文题面 珂朵莉树的板子……这篇文章很不错 据说还有奈芙莲树和瑟尼欧里斯树…… 等联赛考完去学一下(逃 //minamoto #include<bits/stdc++.h> #define ...

  9. USACO Training3.3 A Game【区间Dp】 By cellur925

    题目传送门 一股浓浓的博弈论香气...然而本蒟并不会博弈论. 开始用双端队列+假的dp水过了24pts水数据. 其实是布星的,两人都绝顶聪明会深谋远虑不像我只看眼前,所以上述算法错误. 正解:区间dp ...

  10. Elasticsearch的功能、使用场景以及特点

    1.Elasticsearch的功能,干什么的 2.Elasticsearch的适用场景,能在什么地方发挥作用 3.Elasticsearch的特点,跟其他类似的东西不同的地方在哪里 1.Elasti ...