Intersecting Lines
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 9360   Accepted: 4210

Description

We all know that a pair of distinct points on a plane defines a line and that a pair of lines on a plane will intersect in one of three ways: 1) no intersection because they are parallel, 2) intersect in a line because they are on top of one another (i.e. they are the same line), 3) intersect in a point. In this problem you will use your algebraic knowledge to create a program that determines how and where two lines intersect.  Your program will repeatedly read in four points that define two lines in the x-y plane and determine how and where the lines intersect. All numbers required by this problem will be reasonable, say between -1000 and 1000. 

Input

The first line contains an integer N between 1 and 10 describing how many pairs of lines are represented. The next N lines will each contain eight integers. These integers represent the coordinates of four points on the plane in the order x1y1x2y2x3y3x4y4. Thus each of these input lines represents two lines on the plane: the line through (x1,y1) and (x2,y2) and the line through (x3,y3) and (x4,y4). The point (x1,y1) is always distinct from (x2,y2). Likewise with (x3,y3) and (x4,y4).

Output

There should be N+2 lines of output. The first line of output should read INTERSECTING LINES OUTPUT. There will then be one line of output for each pair of planar lines represented by a line of input, describing how the lines intersect: none, line, or point. If the intersection is a point then your program should output the x and y coordinates of the point, correct to two decimal places. The final line of output should read "END OF OUTPUT".

Sample Input

5
0 0 4 4 0 4 4 0
5 0 7 6 1 0 2 3
5 0 7 6 3 -6 4 -3
2 0 2 27 1 5 18 5
0 3 4 0 1 2 2 5

Sample Output

INTERSECTING LINES OUTPUT
POINT 2.00 2.00
NONE
LINE
POINT 2.00 5.00
POINT 1.07 2.20
END OF OUTPUT
#include <iostream>
#include <cmath>
#include <cstdio>
#include <algorithm>
using namespace std; struct Point{
double x,y;
Point(){}
Point(double x,double y):x(x),y(y){}
};
struct Line{
Point a,b;
}; typedef Point Vector;
Vector operator +(Vector A,Vector B){return Vector(A.x+B.x,A.y+B.y);}
Vector operator -(Vector A,Vector B){return Vector(A.x-B.x,A.y-B.y);}
Vector operator *(Vector A,double p){return Vector(A.x*p,A.y*p);}
Vector operator /(Vector A,double p){return Vector(A.x/p,A.y/p);}
bool operator < (const Point &a,const Point &b)
{
return a.x<b.x||(a.x==b.x&&a.y<b.y);
}
const double eps=1e-10; int dcmp(double x)
{
if(fabs(x)<eps) return 0;
else return x<0?-1:1;
} bool operator == (const Point &a,const Point &b){
return (dcmp(a.x-b.x)==0 && dcmp(a.y-b.y)==0);
} double Dot(Vector A,Vector B){return A.x*B.x+A.y*B.y;}//点积
double Length(Vector A){return sqrt(Dot(A,A));}//向量长度
//两向量的夹角
double Angle(Vector A,Vector B){return acos(Dot(A,B)/Length(A)/Length(B));} double Cross(Vector A,Vector B){ return A.x*B.y-A.y*B.x;}//叉积 Point GetLineIntersection(Point p,Vector v,Point q,Vector w)
{
Vector u=p-q;
double t=Cross(w,u)/Cross(v,w);
return p+v*t;
}
double DistanceToLine(Point P,Point A,Point B)
{
Vector v1=B-A,v2=P-A;
return fabs(Cross(v1,v2)) / Length(v1);
}
void judge(Line a,Line b)
{
Point p;
if(dcmp(Cross(a.a-a.b,b.a-b.b)) == 0)
{
if(dcmp(DistanceToLine(b.a,a.a,a.b)) == 0)
{
printf("LINE\n");return ;
}
else
{
printf("NONE\n");return ;
}
}
else
{
p=GetLineIntersection(a.a,a.a-a.b,b.a,b.a-b.b);
printf("POINT %.2lf %.2lf\n",p.x,p.y);
return ;
}
}
int main()
{
int n,i;
Line L1,L2;
while(~scanf("%d",&n))
{
printf("INTERSECTING LINES OUTPUT\n");
for(i=0;i < n;i++)
{
scanf("%lf %lf %lf %lf",&L1.a.x,&L1.a.y,&L1.b.x,&L1.b.y);
scanf("%lf %lf %lf %lf",&L2.a.x,&L2.a.y,&L2.b.x,&L2.b.y);
judge(L1,L2);
}
printf("END OF OUTPUT\n");
}
return 0;
}

poj 1269 直线间的关系的更多相关文章

  1. POJ 1269 (直线求交)

    Problem Intersecting Lines (POJ 1269) 题目大意 给定两条直线,问两条直线是否重合,是否平行,或求出交点. 解题分析 主要用叉积做,可以避免斜率被0除的情况. 求交 ...

  2. POJ 1269 (直线相交) Intersecting Lines

    水题,以前总结的模板还是很好用的. #include <cstdio> #include <cmath> using namespace std; ; int dcmp(dou ...

  3. POJ 1269 - Intersecting Lines 直线与直线相交

    题意:    判断直线间位置关系: 相交,平行,重合 include <iostream> #include <cstdio> using namespace std; str ...

  4. 判断两条直线的位置关系 POJ 1269 Intersecting Lines

    两条直线可能有三种关系:1.共线     2.平行(不包括共线)    3.相交. 那给定两条直线怎么判断他们的位置关系呢.还是用到向量的叉积 例题:POJ 1269 题意:这道题是给定四个点p1, ...

  5. POJ 1269 Intersecting Lines (判断直线位置关系)

    题目链接:POJ 1269 Problem Description We all know that a pair of distinct points on a plane defines a li ...

  6. POJ 1269 Intersecting Lines(判断两直线位置关系)

    题目传送门:POJ 1269 Intersecting Lines Description We all know that a pair of distinct points on a plane ...

  7. poj 1269 判断直线的位置关系

    题目链接 题意 判断两条直线的位置关系,重合/平行/相交(求交点). 直线以其上两点的形式给出(点坐标为整点). 思路 写出直线的一般式方程(用\(gcd\)化为最简), 计算\(\begin{vma ...

  8. POJ 1269 /// 判断两条直线的位置关系

    题目大意: t个测试用例 每次给出一对直线的两点 判断直线的相对关系 平行输出NODE 重合输出LINE 相交输出POINT和交点坐标 1.直线平行 两向量叉积为0 2.求两直线ab与cd交点 设直线 ...

  9. 直线相交 POJ 1269

    // 直线相交 POJ 1269 // #include <bits/stdc++.h> #include <iostream> #include <cstdio> ...

随机推荐

  1. POJ 2449 Remmarguts' Date

    Time Limit: 4000MS   Memory Limit: 65536K Total Submissions: 30725   Accepted: 8389 Description &quo ...

  2. redis分布式共享锁模拟抢单的实现

    本篇内容主要讲解的是redis分布式锁,并结合模拟抢单的场景来使用,内容节点如下: jedis的nx生成锁 如何删除锁 模拟抢单动作 1.jedis的nx生成锁 对于分布式锁的生成通常需要注意如下几个 ...

  3. react中的setState的使用和深入理解

    前端框架从MVC过渡到MVVM.从DOM操作到数据驱动,一直在不断的进步着,提升着, angular中用的是watcher对象,vue是观察者模式,react就是state了,他们各有各的特点,没有好 ...

  4. python之道06

    1,使⽤循环打印以结果: * *** ***** ******* ********* 答案: 方法一: for i in range(10): if i % 2 == 1: print(i*'*') ...

  5. html中footer如何一直保持在页底

    最近在开发博客过程中,遇到有些body的height是比window的height要低的,然后就出现了footer在页面中间的尴尬样子.那么这种情况怎么解决呢: 首先,写一个footer标签: < ...

  6. perl学习之内置变量

    Perl内置特殊变量   一.正则表达式特殊变量:1.$n  :包含上次模式匹配的第n个子串2.$& :前一次成功模式匹配的字符串3.$`  :前次匹配成功的子串之前的内容4.$’ :前次匹配 ...

  7. Python 模块和包的概念

    模块&包(* * * * *) 模块(modue)的概念: 在计算机程序的开发过程中,随着程序代码越写越多,在一个文件里代码就会越来越长,越来越不容易维护. 为了编写可维护的代码,我们把很多函 ...

  8. POJ-1061 青蛙的约会 (扩展欧几里得)

    [题目描述] 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有 ...

  9. TSOJ--方格上的路径

    题目描述: 试求 n × m 的方格图形中,从点 (0, 0) 到点 (n, m) 的最短路径数目. 输入描述: 有多组测试数据.输入的第一行为一个正整数 N,表示接下来有 N 组测试数据. 在接下来 ...

  10. PAT Basic 1071

    1071 小赌怡情 常言道“小赌怡情”.这是一个很简单的小游戏:首先由计算机给出第一个整数:然后玩家下注赌第二个整数将会比第一个数大还是小:玩家下注 t 个筹码后,计算机给出第二个数.若玩家猜对了,则 ...