pkusc 快到了……做点题涨涨 rp。

初见时 yy 了一个类似于归并的东西,\(O(n^2)\),50 分。

50 分 yy 做法

对于一个点,枚举他能到达的权值(假设这个权值在左子树,在右子树是一样的),选上这个点的概率就是“在左子树选上这个点的概率 \(\times\) (选择子结点最大值的概率 \(\times\) 右子树选出比这个点小的点的概率和+选择子结点最小值的概率 \(\times\) 右子树选出比这个点大的点的概率和)”。

100 分

我们发现,瓶颈在于合并。我们先想到启发式合并,然后就不会了。

我们又想到线段树合并。这里就参考ref这里就可以了。

#include <algorithm>
#include <iostream>
#include <cstdio>
using namespace std;
typedef long long ll;
int n, uu, num[300005], bb, rot[300005], tot, maxa, maxb, ans;
const int mod=998244353;
struct Node{
int l, r, v;
}nd[300005];
struct SGTNode{
int l, r, v, t;
}sgt[5000005];
int ksm(int a, int b){
int re=1;
while(b){
if(b&1) re = (ll)re * a % mod;
a = (ll)a * a % mod;
b >>= 1;
}
return re;
}
void insert(int &x, int l, int r, int v){
x = ++tot;
sgt[x].v = sgt[x].t = 1;
if(l==r) ;
else{
int mid=(l+r)>>1;
if(v<=mid) insert(sgt[x].l, l, mid, v);
else insert(sgt[x].r, mid+1, r, v);
}
}
void pushDown(int x){
if(!x || sgt[x].t<=1) return ;
sgt[sgt[x].l].t = (ll)sgt[sgt[x].l].t * sgt[x].t % mod;
sgt[sgt[x].r].t = (ll)sgt[sgt[x].r].t * sgt[x].t % mod;
sgt[x].v = (ll)sgt[x].v * sgt[x].t % mod;
sgt[x].t = 1;
}
int merge(int x, int y, int p){
if(!x && !y) return 0;
pushDown(x); pushDown(y);
if(!y){
maxa = (maxa + sgt[x].v) % mod;
sgt[x].t = ((maxb+p)%mod-(ll)2*maxb*p%mod+mod) % mod;
pushDown(x);
return x;
}
if(!x){
maxb = (maxb + sgt[y].v) % mod;
sgt[y].t = ((maxa+p)%mod-(ll)2*maxa*p%mod+mod) % mod;
pushDown(y);
return y;
}
sgt[x].r = merge(sgt[x].r, sgt[y].r, p);
sgt[x].l = merge(sgt[x].l, sgt[y].l, p);
sgt[x].v = (sgt[sgt[x].l].v + sgt[sgt[x].r].v) % mod;
return x;
}
void dfs(int x){
if(!nd[x].l)
insert(rot[x], 1, bb, nd[x].v);
else if(!nd[x].r){
dfs(nd[x].l);
rot[x] = rot[nd[x].l];
}
else{
dfs(nd[x].l);
dfs(nd[x].r);
maxa = maxb = 0;
rot[x] = merge(rot[nd[x].l], rot[nd[x].r], nd[x].v);
}
}
void getAns(int x, int l, int r){
if(!x) return ;
pushDown(x);
if(l==r)
ans = (ans + (ll)l*num[l]%mod*sgt[x].v%mod*sgt[x].v%mod) % mod;
else{
int mid=(l+r)>>1;
getAns(sgt[x].l, l, mid);
getAns(sgt[x].r, mid+1, r);
}
}
int main(){
cin>>n;
for(int i=1; i<=n; i++){
scanf("%d", &uu);
if(nd[uu].l) nd[uu].r = i;
else nd[uu].l = i;
}
int inv=ksm(10000, mod-2);
for(int i=1; i<=n; i++){
scanf("%d", &uu);
if(nd[i].l) nd[i].v = (ll)uu * inv % mod;
else{
nd[i].v = uu;
num[++bb] = uu;
}
}
sort(num+1, num+1+bb);
bb = unique(num+1, num+1+bb) - (num + 1);
for(int i=1; i<=n; i++)
if(!nd[i].l)
nd[i].v = lower_bound(num+1, num+1+bb, nd[i].v) - num;
dfs(1);
getAns(rot[1], 1, bb);
cout<<ans<<endl;
return 0;
}

loj2537 「PKUWC 2018」Minimax的更多相关文章

  1. LOJ #2537. 「PKUWC 2018」Minimax (线段树合并 优化dp)

    题意 小 \(C\) 有一棵 \(n\) 个结点的有根树,根是 \(1\) 号结点,且每个结点最多有两个子结点. 定义结点 \(x\) 的权值为: 1.若 \(x\) 没有子结点,那么它的权值会在输入 ...

  2. 「PKUWC 2018」Minimax

    传送门:Here 一道线段树合并好题 如果要维护点$ x$的信息,相当于合并$ x$的两棵子树 对于这题显然有:任何叶子节点的权值都可能出现在其祖先上 因而我们只需要在线段树合并的时候维护概率即可 我 ...

  3. LOJ #2542. 「PKUWC 2018」随机游走(最值反演 + 树上期望dp + FMT)

    写在这道题前面 : 网上的一些题解都不讲那个系数是怎么推得真的不良心 TAT (不是每个人都有那么厉害啊 , 我好菜啊) 而且 LOJ 过的代码千篇一律 ... 那个系数根本看不出来是什么啊 TAT ...

  4. LOJ #2541. 「PKUWC 2018」猎人杀(容斥 , 期望dp , NTT优化)

    题意 LOJ #2541. 「PKUWC 2018」猎人杀 题解 一道及其巧妙的题 , 参考了一下这位大佬的博客 ... 令 \(\displaystyle A = \sum_{i=1}^{n} w_ ...

  5. LOJ #2540. 「PKUWC 2018」随机算法(概率dp)

    题意 LOJ #2540. 「PKUWC 2018」随机算法 题解 朴素的就是 \(O(n3^n)\) dp 写了一下有 \(50pts\) ... 大概就是每个点有三个状态 , 考虑了但不在独立集中 ...

  6. LOJ #2538. 「PKUWC 2018」Slay the Spire (期望dp)

    Update on 1.5 学了 zhou888 的写法,真是又短又快. 并且空间是 \(O(n)\) 的,速度十分优秀. 题意 LOJ #2538. 「PKUWC 2018」Slay the Spi ...

  7. loj2538 「PKUWC 2018」Slay the Spire

    pkusc 快到了--做点题涨涨 rp. ref我好菜啊QAQ. 可以发现期望只是一个幌子.我们的目的是:对于所有随机的选择方法(一共 \(\binom{2n}{m}\)种),这些选择方法都最优地打出 ...

  8. loj2540 「PKUWC 2018」随机算法

    pkusc 快到了--做点题涨涨 rp. 记 \(f(S,i)\) 表示 \(S\) 这个集合是决计不能选的(要么属于独立集,要么和独立集相连),或称已经考虑了的,\(i\) 表示此集合对应的最大独立 ...

  9. 「PKUWC 2018」随机算法 (第二版,正解做法)

    上一版貌似是打了 O(3 ^ N) 暴力和 一条链的情况,得了60分.... 第一次做的时候光想练一练暴力...就没去想正解,谁知道正解比暴力好写不知道多少,mmp 设 f(S) 为 选集合S中的点可 ...

随机推荐

  1. 从零开始的全栈工程师——js篇2.11(原型)

    原型 原型分析 1.每个 函数数据类型(普通函数,类)都有一个prototype属性 并且这个属性是一个对象数据类型2.每个Prototype上都有一个constructor属性 并且这个属性值是当前 ...

  2. mui的ajax例子1

    mui.ajax()方法,get请求 前端页面: <!DOCTYPE html><html><head> <meta charset="utf-8& ...

  3. 使用HTML5 canvas做地图(1)基础知识

    之前一直想使用HTML5技术全新做一套地图API,可是苦于时间和精力,迟迟未有行动.后来下定决心,利用下班和周末做出一个大体框架出来,现在和网友分享一下自己的整体的一个思路和想法.欢迎大家提出宝贵建议 ...

  4. SVN Working copy '***' locked

    问题描述: 用svn在项目文件夹下commit或者update时会出现错误提示“working copy locked” 解决方法: 1.在项目文件夹下,单击鼠标右键,选择tortoisesvn-&g ...

  5. co-dialog弹出框组件-版本v2.0.0

    co-dialog theme 访问git:co-dialog 版本v2.0.0 主题2 coog.app('.theme2').use({ title: 'JUST CHECKING.', mess ...

  6. NBU基本常用命令

    Veritas常用命令: 1. 查看当有运行的任务 bpdbjobs –report | grep Active 2. 停止任务 bpdbjobs –cancel PID (包括主任务和子任务) 3. ...

  7. PageHelper 记录总条数不正确问题处理

    //PageHelper.startPage会返回一个page对象,这个对象在查询结果出来后会把页数,记录总数给page对象,用page.getPages()和getTotal()获取页数和记录总数. ...

  8. CUDA入门需要知道的东西

    CUDA刚学习不久,做毕业要用,也没时间研究太多的东西,我的博客里有一些我自己看过的东西,不敢保证都特别有用,但是至少对刚入门的朋友或多或少希望对大家有一点帮助吧,若果你是大牛请指针不对的地方,如果你 ...

  9. Drupal7新装一个主题时页面白屏,如何设置一个默认主题?

    问题: 请问我不小心退出登陆了 但这个主题没有登录口 而且之前不知道为什么我其他界面都不能显示内容所以 ?q=user 也不行,怎么办呢?看网上说更换默认主题 去variable表里把默认主题换了,我 ...

  10. 深入理解new String()

    一. 引言 new String("hello")这样的创建方式,到底创建了几个String对象? 二. 分析 String s1 = "HelloWorld" ...