4070: [Apio2015]雅加达的摩天楼

Time Limit: 10 Sec  Memory Limit: 256 MB
Submit: 464  Solved: 164
[Submit][Status][Discuss]

Description

印尼首都雅加达市有 N 座摩天楼,它们排列成一条直线,我们从左到右依次将它们编号为 0 到 N−1。除了这 N 座摩天楼外,雅加达市没有其他摩天楼。

 
有 M 只叫做 “doge” 的神秘生物在雅加达市居住,它们的编号依次是 0 到 M−1。编号为 i 的 doge 最初居住于编号为 Bi 的摩天楼。每只 doge 都有一种神秘的力量,使它们能够在摩天楼之间跳跃,编号为 i 的 doge 的跳跃能力为 Pi (Pi>0)。
 
在一次跳跃中,位于摩天楼 b 而跳跃能力为 p 的 doge 可以跳跃到编号为 b−p (如果 0≤b−p<N)或 b+p (如果 0≤b+p<N)的摩天楼。
 
编号为 0 的 doge 是所有 doge 的首领,它有一条紧急的消息要尽快传送给编 号为 1 的 doge。任何一个收到消息的 doge 有以下两个选择:
 
跳跃到其他摩天楼上;
将消息传递给它当前所在的摩天楼上的其他 doge。
请帮助 doge 们计算将消息从 0 号 doge 传递到 1 号 doge 所需要的最少总跳跃步数,或者告诉它们消息永远不可能传递到 1 号 doge。
 

Input

输入的第一行包含两个整数 N 和 M。

 
接下来 M 行,每行包含两个整数 Bi 和 Pi。
 

Output

输出一行,表示所需要的最少步数。如果消息永远无法传递到 1 号 doge,输出 −1。

 

Sample Input

5 3
0 2
1 1
4 1

Sample Output

5
explanation
下面是一种步数为 5 的解决方案:
0 号 doge 跳跃到 2 号摩天楼,再跳跃到 4 号摩天楼(2 步)。
0 号 doge 将消息传递给 2 号 doge。
2 号 doge 跳跃到 3 号摩天楼,接着跳跃到 2 号摩天楼,再跳跃到 1 号摩天楼(3 步)。
2 号 doge 将消息传递给 1 号 doge。

HINT

子任务

所有数据都保证 0≤Bi<N。
 
子任务 1 (10 分)
1≤N≤10
1≤Pi≤10
2≤M≤3
子任务 2 (12 分)
1≤N≤100
1≤Pi≤100
2≤M≤2000
子任务 3 (14 分)
1≤N≤2000
1≤Pi≤2000
2≤M≤2000
子任务 4 (21 分)
1≤N≤2000
1≤Pi≤2000
2≤M≤30000
子任务 5 (43 分)
1≤N≤30000
1≤Pi≤30000
2≤M≤30000

Source

想法:因为同一个doge不会再跑回来,所以这样暴力连边:Bi->Bi+k*Pi dis=k;K∈N.O(n^2)

另一个暴力:每种P,对于每种模数[0,P-1]。建一条轨道,轨道之间连双向边边权为1.然后Bi直接连Bi对应的轨道点P,边权为0.O(n^2)

优化第二个暴力:如果这个模数上并没有点那就不用建了。

分析一发复杂度:最坏情况,那肯定是所有轨道上都只有一个点。模数越大,一个点要建的轨道越小:N/P。所以最坏数据P从1开始,每个模数都有一个。

M=1+2+3+...+X。X=sqrt (2*M) 所以共O(sqrt(2*M)*n)条边...理论复杂度过了,但也许需要卡卡空间.....

#include<cstdio>
#include<vector>
#include<algorithm> #define usint unsigned short int
#define next(x) x==M?1:x+1
#define swap(a,b) a^=b,b^=a,a^=b;
//1<<16 -1
const int len(),N(),INF(0x7fffffff),M();
int n,m,now,S,T,last[len+];
struct Data{usint B,P,k;}doge[len+];
bool cmp(Data X,Data Y){if(X.P==Y.P)return X.k<Y.k;return X.P<Y.P;}
struct Node{int nd,nx;}bot[len+];
int tot,first[len+],Down[N+],Up[N+];//卡空间
usint To[N+];
void add(int a,int b){bot[++tot]=(Node){b,first[a]};first[a]=tot;}
template <class T>void read(T &x)
{
x=; char ch=getchar(); int f=;
while(ch<''||ch>''){f=(ch=='-');ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
x=f?-x:x;
}
int q[M+],l,h,x,y; int dis[N+]; bool flag[N+];
void Spfa()
{
for(int i=;i<=now;i++)dis[i]=INF;//dis[0]=0;
q[l=]=S; dis[S]=; h=; flag[S]=;
while(h!=l)
{
h=next(h); x=q[h]; y=next(h);
if(x<=n)
{
for(int v=first[x];v;v=bot[v].nx)
if(dis[bot[v].nd]>dis[x])
{
dis[bot[v].nd]=dis[x];
if(!flag[bot[v].nd])
{
l=next(l);
q[l]=bot[v].nd; flag[bot[v].nd]=;
if(dis[q[l]]>dis[q[y]])swap(q[y],q[l]);
}
}
}else
{
if(dis[To[x]]>dis[x])
{
dis[To[x]]=dis[x];
if(!flag[To[x]])
{
l=next(l);
q[l]=To[x]; flag[To[x]]=;
if(dis[q[l]]>dis[q[y]])swap(q[y],q[l]);
}
}
if(dis[Down[x]]>dis[x]+)
{
dis[Down[x]]=dis[x]+;
if(!flag[Down[x]])
{
l=next(l);
q[l]=Down[x]; flag[Down[x]]=;
if(dis[q[l]]>dis[q[y]])swap(q[y],q[l]);
}
}
if(dis[Up[x]]>dis[x]+)
{
dis[Up[x]]=dis[x]+;
if(!flag[Up[x]])
{
l=next(l);
q[l]=Up[x]; flag[Up[x]]=;
if(dis[q[l]]>dis[q[y]])swap(q[y],q[l]);
}
}
}
flag[x]=;
}
}
int main()
{
read(n),read(m);
for(int i=;i<=m;i++)
{
read(doge[i].B),read(doge[i].P);
doge[i].k=doge[i].B%doge[i].P;
}
S=doge[].B;T=doge[].B;
std::sort(doge+,doge++m,cmp);
now=n;
for(int i=;i<=m;i++)
{
if(doge[i].P!=doge[i-].P || doge[i].k!=doge[i-].k)
for(int j=doge[i].k;j<n;j+=doge[i].P)
{
To[++now]=j;
if(j!=doge[i].k)Down[now]=now-;else Down[now]=now;
if(j+doge[i].P<n)Up[now]=now+;else Up[now]=now;
last[j]=now;
}
add(doge[i].B,last[doge[i].B]);
}
Spfa();
printf("%d",dis[T]!=INF?dis[T]:-);
return ;
}

BZOJ 4070:[APIO2015]雅加达的摩天楼 最短路的更多相关文章

  1. bzoj 4070 [Apio2015]雅加达的摩天楼 Dijkstra+建图

    [Apio2015]雅加达的摩天楼 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 644  Solved: 238[Submit][Status][D ...

  2. bzoj 4070: [Apio2015]雅加达的摩天楼【spfa】

    明明是个最短路却有网络流一样的神建图= A = 首先要是暴力建图的话最坏有O(nm)条边.所以优化建图. 考虑分块思想,设bs=sqrt(n),对于p大于bs的,直接连边即可,最多有sqrt(n)条, ...

  3. BZOJ 4070 [Apio2015]雅加达的摩天楼 ——分块 SPFA

    挺有趣的分块的题目. 直接暴力建边SPFA貌似是$O(nm)$的. 然后考虑分块,$\sqrt n$一下用虚拟节点辅助连边, 以上的直接暴力连边即可. 然后卡卡时间,卡卡空间. 终于在UOJ上T掉辣. ...

  4. BZOJ 4070: [Apio2015]雅加达的摩天楼 根号分治+spfa

    此题卡Dijkstra... Code: #include <bits/stdc++.h> #define N 30005 #define M 4000000 #define ll lon ...

  5. 4070: [Apio2015]雅加达的摩天楼

    Description 印尼首都雅加达市有 N 座摩天楼,它们排列成一条直线,我们从左到右依次将它们编号为 0 到 N−1.除了这 N 座摩天楼外,雅加达市没有其他摩天楼.   有 M 只叫做 “do ...

  6. 洛谷$P3645\ [APIO2015]$雅加达的摩天楼 最短路

    正解:最短路 解题报告: 传送门$QwQ$ 考虑暴力连边,发现最多有$n^2$条边.于是考虑分块 对于长度$p_i$小于等于$\sqrt(n)$的边,建立子图$d=p_i$.说下关于子图$d$的定义? ...

  7. 【题解】P3645 [APIO2015]雅加达的摩天楼(分层图最短路)

    [题解]P3645 [APIO2015]雅加达的摩天楼(分层图最短路) 感觉分层图是个很灵活的东西 直接连边的话,边数是\(O(n^2)\)的过不去 然而我们有一个优化的办法,可以建一个新图\(G=( ...

  8. 【BZOJ4070】[Apio2015]雅加达的摩天楼 set+最短路

    [BZOJ4070][Apio2015]雅加达的摩天楼 Description 印尼首都雅加达市有 N 座摩天楼,它们排列成一条直线,我们从左到右依次将它们编号为 0 到 N−1.除了这 N 座摩天楼 ...

  9. luogu P3645 [APIO2015]雅加达的摩天楼 分块 根号分治

    LINK:雅加达的摩天楼 容易想到设\(f_{i,j}\)表示第i个\(doge\)在第j层楼的最小步数. 转移显然是bfs.值得一提的是把初始某层的\(doge\)加入队列 然后转移边权全为1不需要 ...

随机推荐

  1. eval解析字符串问题

    eval(string) 参数 描述 string 必需.要计算的字符串,其中含有要计算的 JavaScript 表达式或要执行的语句. 复制代码 var str = '{"name&quo ...

  2. 初识Kotlin之集合

    Kotlin的集合是让我为之心动的地方,丰富的高阶函数帮助我们高效开发.今天介绍Kotlin的基础集合用法.获取集合元素的函数.过滤元素的函数.元素排序的函数.元素统计的函数.集合元素映射的函数.集合 ...

  3. Codeforces Round #401 (Div. 2)【A,B,C,D】

    最近状态极差..水题不想写,难题咬不动..哎,CF的题那么简单,还搞崩了= =.真是巨菜无比. Codeforces777A 题意:略. 思路: 构造出3!次变换,然后输出就好. Code: #inc ...

  4. php 数值转多少年,多少天,多少时,多少分,多少秒

    function Sec2Time($time){ if(is_numeric($time)){ $value = array( "years" => 0, "da ...

  5. uoj#228. 基础数据结构练习题(线段树)

    传送门 只有区间加区间开方我都会--然而加在一起我就gg了-- 然后这题的做法就是对于区间加直接打标记,对于区间开方,如果这个区间的最大值等于最小值就直接区间覆盖(据ljh_2000大佬说这个区间覆盖 ...

  6. [Xcode 实际操作]七、文件与数据-(1)获取程序沙箱结构中常用的几个目录

    目录:[Swift]Xcode实际操作 本文将演示如何获取程序沙箱结构中,常见的几个目录. 在项目导航区,打开视图控制器的代码文件[ViewController.swift] import UIKit ...

  7. jar包冲突问题

    这两天在启动一个新项目的时候,项目一直启动不了,报StackOverFlow; java.util.concurrent.ExecutionException: java.lang.StackOver ...

  8. 微信站 - 实现复制功能 clipboard

    <script src="https://cdn.bootcss.com/clipboard.js/1.5.9/clipboard.js"></script> ...

  9. BZOJ 2288: 【POJ Challenge】生日礼物 堆&&链表

    就是堆+链表,十分像 数据备份 对吧? 把相邻的正数和相邻的负数合并成一整个正数块和负数块,最后只剩一些交替相间的正块与负块了吧? 显然,正块的个数<=m时,全部选走就获得了最大权值,否则我们可 ...

  10. 程序运行过程中遇到“ORA-03114: not connected to ORACLE”的问题解决

    c#,winform程序,数据批量入oracle库时用到DataAdaper的.FillSchema函数,如:da.FillSchema(dt2, SchemaType.Mapped); 程序运行一段 ...