hdu3949XOR(线性基)
不知道线性基是什么东西的可以看看蒟蒻的总结
题目大意:求一堆数字能异或出的第$k$大的数是多少
线性基求第k大好珂怕……
据大佬们说就是把$k$给二进制拆分,如果$k$的第$i$位为1,那么$ans^=b[i]$
然后就是注意矩阵得消成对角矩阵而不是上三角矩阵……
这样的话$1$只会出现在对角线上
记$cnt$为对角线上有多少个$1$
显然能获得的异或值总共有$1<<cnt$个(包括0)
然后注意,如果$cnt!=n$,那么这一堆数字就是线性相关的,可以异或出0
否则的话说明这一堆数字线性无关,无法异或出0,那么得把$k++$(因为我们这里的$k$是默认能取到0的)
然后剩下的细节看代码好了
//minamoto
#include<iostream>
#include<cstdio>
#include<cstring>
#define ll long long
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
inline ll read(){
#define num ch-'0'
char ch;bool flag=;ll res;
while(!isdigit(ch=getc()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getc());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
const int N=1e5+;
int n,m,k;ll a[N],b[];
void init(){
for(int i=;i<=n;++i)
for(int j=;j>=;--j){
if(a[i]>>j&){
if(b[j]) a[i]^=b[j];
else{
b[j]=a[i];
for(int k=j-;k>=;--k)
if(b[k]&&(b[j]>>k&)) b[j]^=b[k];
for(int k=j+;k<=;++k)
if(b[k]>>j&) b[k]^=b[j];
break;
}
}
}
}
int main(){
// freopen("testdata.in","r",stdin);
int T=read();
for(int cas=;cas<=T;++cas){
memset(b,,sizeof(b));n=read();
for(int i=;i<=n;++i) a[i]=read();
init();
int cnt=;
for(int i=;i<=;++i)
if(b[i]) ++cnt;
m=read();
printf("Case #%d:\n",cas);
while(m--){
ll x=read();
if(cnt==n) ++x;
if(x>(1ll<<cnt)){puts("-1");continue;}
ll ans=;
int tmp=cnt;
for(int i=;i>=;--i){
if(b[i]){
ll now=(1ll<<(tmp-));
if(x>now) x-=now,ans^=b[i];
--tmp;
}
}
printf("%lld\n",ans);
}
}
return ;
}
hdu3949XOR(线性基)的更多相关文章
- BZOJ 2844 albus就是要第一个出场 ——高斯消元 线性基
[题目分析] 高斯消元求线性基. 题目本身不难,但是两种维护线性基的方法引起了我的思考. void gauss(){ k=n; F(i,1,n){ F(j,i+1,n) if (a[j]>a[i ...
- BZOJ 2115 [Wc2011] Xor ——线性基
[题目分析] 显然,一个路径走过两边是不需要计算的,所以我么找到一条1-n的路径,然后向该异或值不断异或简单环即可. 但是找出所有简单环是相当复杂的,我们只需要dfs一遍,找出所有的环路即可,因为所有 ...
- BZOJ 3105 [CQOI2013]新Nim游戏 ——线性基
[题目分析] 神奇的题目,两人都可以第一次取走足够多堆的石子. nim游戏的规则是,如果异或和为0,那么就先手必输,否则先手有必胜策略. 所以只需要剩下一群异或和为0就可以了. 先排序,线性基扫一遍即 ...
- BZOJ 2460 [BeiJing2011]元素 ——线性基
[题目分析] 线性基,由于最多有63个,只需要排序之后,动态的去维护线性基即可. [代码] #include <cstdio> #include <cstring> #incl ...
- Xor && 线性基练习
#include <cstdio> #include <cstring> ; ; int cnt,Ans,b,x,n; inline int Max(int x,int y) ...
- 【BZOJ-4568】幸运数字 树链剖分 + 线性基合并
4568: [Scoi2016]幸运数字 Time Limit: 60 Sec Memory Limit: 256 MBSubmit: 238 Solved: 113[Submit][Status ...
- 【BZOJ-2460&3105】元素&新Nim游戏 动态维护线性基 + 贪心
3105: [cqoi2013]新Nim游戏 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 839 Solved: 490[Submit][Stat ...
- 【BZOJ-2115】Xor 线性基 + DFS
2115: [Wc2011] Xor Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 2142 Solved: 893[Submit][Status] ...
- 【BZOJ-4269】再见Xor 高斯消元 + 线性基
4269: 再见Xor Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 131 Solved: 81[Submit][Status][Discuss] ...
随机推荐
- Linux学习笔记--ps命令(显示当前进程的命令)
ps:英文名process,进程的意思. 1. 命令格式: ps [选项] 2. 经常使用选项: "ps -a" 显示一个终端的全部进程.除了会话引线 "ps -e&qu ...
- java的多生产者多消费者例子
import java.util.concurrent.locks.*; public class Test9 { public static void main(String[] args) { / ...
- socket基本使用
UDP发送和接收 MainRecv.cpp #include <iostream> #include <WinSock2.h> #include <sstream> ...
- 对于iPhone描述文件的签名认证
1.购买SSL证书验证(跟https认证一样) 2.iphone 签名.mobileconfig文件 company.mobileconfig 未签名的mobileconfig文件 server.cr ...
- Linux ARM交叉编译工具链制作过程【转】
本文转载自:http://www.cnblogs.com/Charles-Zhang-Blog/archive/2013/02/21/2920999.html 一.下载源文件 源代码文件及其版本与下载 ...
- 近期测试BUG总结
前些日子上线了新版的app,在上线后发现了几个重大的bug,在此总结,在以后的测试工作中需要额外的关注. 需求流程bug 页面刷新bug 标签栏刷新bug 第一个bug出现的原因是产品需求与运营实际操 ...
- BZOJ2006:超级钢琴(ST表+堆求前K大区间和)
Description 小Z是一个小有名气的钢琴家,最近C博士送给了小Z一架超级钢琴,小Z希望能够用这架钢琴创作出世界上最美妙的音乐. 这架超级钢琴可以弹奏出n个音符,编号为1至n.第i个音符的美妙度 ...
- Battle Ships(复习泛化物品**)
传送门Battle Ships Time Limit: 2 Seconds Memory Limit: 65536 KB Battle Ships is a new game which i ...
- TX1 ssh配置
执行: sudo apt-get install openssh-server 验证: sudo ps -e |grep ssh 回车-->有sshd,说明ssh服务已经启,如果没有则输入命令s ...
- SpringMVC注解说明
@controller 通过@controller标注即可将class定义为一个controller类. @RequestMapping value 表示需要匹配的url的格式. method 表示所 ...