NOIP2017 小凯的疑惑 解题报告(赛瓦维斯特定理)
题目描述
小凯手中有两种面值的金币,两种面值均为正整数且彼此互素。每种金币小凯都有 无数个。在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的。现在小 凯想知道在无法准确支付的物品中,最贵的价值是多少金币?注意:输入数据保证存在 小凯无法准确支付的商品。
输入输出格式
输入格式:
两个正整数 $a$ 和 $b$ ,它们之间用一个空格隔开,表示小凯中金币的面值。
输出格式:
一个正整数 $N$ ,表示不找零的情况下,小凯用手中的金币不能准确支付的最贵的物品的价值。
题解:
NOIP2017 小凯的疑惑 解题报告(赛瓦维斯特定理)的更多相关文章
- 联赛膜你测试20 T1 Simple 题解 && NOIP2017 小凯的疑惑 题解(赛瓦维斯特定理)
前言: 数学题,对于我这种菜B还是需要多磨啊 Simple 首先它问不是好数的数量,可以转化为用总数量减去是好数的数量. 求"好数"的数量: 由裴蜀定理得,如果某个数\(i\)不能 ...
- 【比赛】NOIP2017 小凯的疑惑
找规律:ans=a*b-a-b 证明:(可见 体系知识) gcd(A, B) = 1 → lcm(A, B) = AB 剩余类,把所有整数划分成m个等价类,每个等价类由相互同余的整数组成 任何数分成m ...
- [CSP-S模拟测试]:小奇挖矿2(DP+赛瓦维斯特定理)
题目背景 小奇飞船的钻头开启了无限耐久+精准采集模式!这次它要将原矿运到泛光之源的矿石交易市场,以便为飞船升级无限非概率引擎. 题目描述 现在有$m+1$个星球,从左到右标号为$0$到$n$,小奇最初 ...
- NOIP2017 小凯的疑惑
题目描述 小凯手中有两种面值的金币,两种面值均为正整数且彼此互素.每种金币小凯都有 无数个.在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的.现在小 凯想知道在无法准确支付的物品中,最贵的 ...
- 题解【洛谷P3951】[NOIP2017]小凯的疑惑
题目描述 小凯手中有两种面值的金币,两种面值均为正整数且彼此互素.每种金币小凯都有 无数个.在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的.现在小 凯想知道在无法准确支付的物品中,最贵的 ...
- luogu2951 noip2017 小凯的疑惑
在考场上我们可以打表发现规律是 $ ab-a-b $ .下面给出证明(看的网上的). 若有正数 $ x $ 不能被 $ a $ , $ b $ 组合出,假设 $ a>b $ ,则存在 \[ x= ...
- luogu 3951 小凯的疑惑
noip2017 D1T1 小凯的疑惑 某zz选手没有看出这道结论题,同时写出了exgcd却不会用,只能打一个哈希表骗了30分 题目大意: 两个互质的正整数a和b,求一个最小的正整数使这个数无法表示为 ...
- 2017提高组D1T1 洛谷P3951 小凯的疑惑
洛谷P3951 小凯的疑惑 原题 题目描述 小凯手中有两种面值的金币,两种面值均为正整数且彼此互素.每种金币小凯都有 无数个.在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的.现在小 凯想 ...
- Luogu [P3951] 小凯的疑惑
题目详见:[P3951]小凯的疑惑 首先说明:此题为一道提高组的题.但其实代码并没有提高组的水平.主要考的是我们的推断能力,以及看到题后的分析能力. 分析如下: 证明当k>ab-a-b时,小凯可 ...
随机推荐
- 10.2.0.4 to 10.2.0.5 Installation of Patch Set Release (Windows)
环境:10.2.0.4集群数据库zlm10g(双节点,zlm10g1,zlm10g2) 系统:Windows 2003 Server 64Bit 内存:2G RAM 存储:ASM 目标:把集群数据库从 ...
- POJ-3264-Balanced Lineup-单点更新
题目链接:id=3264">http://poj.org/problem? id=3264 这是一个单点更新的模板题,就不详解了,HDU敌兵布阵那题我有详解:链接:http://blo ...
- 剪切具有CornerRadius的RectangleGeometry(可能在Ripple中用到)
剪切具有CornerRadius的RectangleGeometry(可能在Ripple中用到) 1.新建Converter public class BorderClipConverter : IM ...
- Objective-c 中如何重写父类的初始化方法
在我们的日常开发中我们经常会定义一些自己的子类继承一些UIKit 库中的类,那我们应该如何重写的这些初化方法呢?那我们先看看这些类有哪些初初化方法吧.(这里就用UIView为例) - (id)init ...
- ora-01157怎么解决
在数据库startup时,出现以下两个错误:ora-01157:cannot identify/lock data file 8 -see DBWR trace fileora-01110:data ...
- 19.boost A*算法
#include <iostream> #include <string> #include <utility> #include <vector> # ...
- crontab中使用sudo命令的注意
在使用crontab执行非root用户定时任务时,有时候shell脚本里需要用到sudo以获得root权限: 如: VIP_CARD=eth0 VIP_ADDR=192.168.4.119 NETMA ...
- sublime text3前端常用插件
安装Package Control 在安装插件之前,需要让sublime安装Package Control.打开Sublime Text的控制台,快捷键ctrl + ~,在控制台中输入以下代码. im ...
- FCC编程题之中级算法篇(下)
介绍 本篇是"FCC编程题之中级算法篇"系列的最后一篇 这期完结后,下期开始写高级算法,每篇一题 目录 1. Smallest Common Multiple 2. Finders ...
- 快速沃尔什变换(FWT)笔记
开头Orz hy,Orz yrx 部分转载自hy的博客 快速沃尔什变换,可以快速计算两个多项式的位运算卷积(即and,or和xor) 问题模型如下: 给出两个多项式$A(x)$,$B(x)$,求$C( ...