题目描述

设一个n个节点的二叉树tree的中序遍历为(1,2,3,…,n),其中数字1,2,3,…,n为节点编号。每个节点都有一个分数(均为正整数),记第ii个节点的分数为di,treedi,tree及它的每个子树都有一个加分,任一棵子树subtree(也包含tree本身)的加分计算方法如下:

subtree的左子树的加分× subtree的右子树的加分+subtree的根的分数。

若某个子树为空,规定其加分为11,叶子的加分就是叶节点本身的分数。不考虑它的空子树。

试求一棵符合中序遍历为(1,2,3,…,n)且加分最高的二叉树tree。要求输出;

(1)tree的最高加分

(2)tree的前序遍历

输入输出格式

输入格式:

第1行:1个整数n(n<30),为节点个数。

第2行:n个用空格隔开的整数,为每个节点的分数(分数<100)。

输出格式:

第1行:1个整数,为最高加分(Ans ≤4,000,000,000)。

第2行:n个用空格隔开的整数,为该树的前序遍历。

输入输出样例

输入样例#1: 复制

5
5 7 1 2 10
输出样例#1: 复制

145
3 1 2 4 5

****空子树赋值为1是为了不出现乘积为0的情况,所以空子树需要预处理一下,子叶点也需要预处理一下,另外啊,前序序列见下面代码的sousuo函数

opt自动看成f就好。

 #include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
int i,j,m,n,k,l,r,a[],g[][],f[][],ans;
int sousuo(int l,int r)
{
if(l == r)
printf("%d ",l);
else if(l > r)
return ;
else
{
printf("%d ",g[l][r]);
sousuo(l,g[l][r] - );
sousuo(g[l][r] + ,r);
} }
int main()
{
scanf("%d",&n);
for(i = ;i <= n;i++)
{
scanf("%d",&a[i]);
f[i][i - ] = ;
f[i][i] = a[i];
}
for(l = ;l <= n;l++)
{
for(i = ;i <= n - l + ;i++)
{
j = i + l - ;
for(k = i;k <= j;k++)
{
ans = f[i][k - ] * f[k + ][j] + a[k];
if(ans > f[i][j])
{
f[i][j] = ans;
g[i][j] = k;
}
}
}
}
printf("%d\n",f[][n]);
sousuo(,n);
return ;
}

NOIP2003加分二叉树的更多相关文章

  1. cogs 106. [NOIP2003] 加分二叉树(区间DP)

    106. [NOIP2003] 加分二叉树 ★☆   输入文件:jfecs.in   输出文件:jfecs.out   简单对比时间限制:1 s   内存限制:128 MB [问题描述] 设 一个 n ...

  2. NOIP2003加分二叉树[树 区间DP]

    题目描述 设一个n个节点的二叉树tree的中序遍历为(1,2,3,…,n),其中数字1,2,3,…,n为节点编号.每个节点都有一个分数(均为正整数),记第i个节点的分数为di,tree及它的每个子树都 ...

  3. 【题解】NOI2009二叉查找树 + NOIP2003加分二叉树

    自己的思维能力果然还是太不够……想到了这棵树所有的性质即中序遍历不变,却并没有想到怎样利用这一点.在想这道题的过程中走入了诸多的误区,在这里想记录一下 & 从中吸取到的教训(原该可以避免的吧) ...

  4. NOIP2003 加分二叉树

    http://www.luogu.org/problem/show?pid=1040 题目描述 设一个n个节点的二叉树tree的中序遍历为(1,2,3,…,n),其中数字1,2,3,…,n为节点编号. ...

  5. NOIP-2003 加分二叉树

    题目描述 设一个n个节点的二叉树tree的中序遍历为(1,2,3,…,n),其中数字1,2,3,…,n为节点编号.每个节点都有一个分数(均为正整数),记第i个节点的分数为di,tree及它的每个子树都 ...

  6. CJOJ 1010【NOIP2003】加分二叉树 / Luogu 1040 加分二叉树(树型动态规划)

    CJOJ 1010[NOIP2003]加分二叉树 / Luogu 1040 加分二叉树(树型动态规划) Description 设 一个 n 个节点的二叉树 tree 的中序遍历为( 1,2,3,-, ...

  7. 加分二叉树 vijos1991 NOIP2003第三题 区间DP/树形DP/记忆化搜索

    描述 设一个n个节点的二叉树tree的中序遍历为(l,2,3,-,n),其中数字1,2,3,-,n为节点编号.每个节点都有一个分数(均为正整数),记第i个节点的分数为di,tree及它的每个子树都有一 ...

  8. CODEVS1090 加分二叉树

    codevs1090 加分二叉树 2003年NOIP全国联赛提高组 题目描述 Description 设一个n个节点的二叉树tree的中序遍历为(l,2,3,…,n),其中数字1,2,3,…,n为节点 ...

  9. Vijos 1100 加分二叉树

    题目 1100 加分二叉树 2003年NOIP全国联赛提高组  时间限制: 1 s  空间限制: 128000 KB   题目描述 Description 设一个n个节点的二叉树tree的中序遍历为( ...

随机推荐

  1. Linux let 命令

    命令:let let 命令是 BASH 中用于计算的工具,用于执行一个或多个表达式,变量计算中不需要加上 $ 来表示变量.如果表达式中包含了空格或其他特殊字符,则必须引起来. 语法格式 let arg ...

  2. Centos7下安装memcached

    1. which memcached //如果已经安装,会有“/usr/bin/memcached”类似的输出 memcached -h //memcache帮助列表 php -m | grep me ...

  3. Django中ORM简介与单表数据操作

    一. ORM简介  概念:.ORM框架是用于实现面向对象编程语言种不同类型系统的数据之间的转换 构建模型的步骤:重点 (1).配置目标数据库信息,在seting.py中设置数据库信息 DATABASE ...

  4. MVC后台获取数据和插入数据的三种方式【二】

    MVC模式下,从前端获取数据返回后台,总共有三种形式.下面的代码示例将演示如何将数据返回到后端. 一.首先我们看看表单代码,注意input标签中name的值. <html> <hea ...

  5. vue组件定义全局方法

    1.在vue实例的data中定义一个对象 2.可以在其他组件定义方法 3.触发方法

  6. leecode第五题(最长回文子串)

    class Solution { public: string longestPalindrome(string s) { int len = s.length(); || len == ) retu ...

  7. 在nodejs中的集成虹软人脸识别

    ==虹软官网地址==http://www.arcsoft.com.cn 在官网注册账号,并且申请人脸识别激活码, 选择SDK版本和运行系统(windows/linux/android/ios) ,我们 ...

  8. AD中设置PCB线间距

    Design->Rules->Electrical->Clearance->Clearance

  9. java重新开始学习

    1.从菜鸟网站开始学习.http://www.runoob.com/java/java-tutorial.html 2. String args[] 与 String[] args 还有一个就是Str ...

  10. legend2---开发日志5(如何解决插件的延迟问题,比如vue)

    legend2---开发日志5(如何解决插件的延迟问题,比如vue) 一.总结 一句话总结:元素可以先设置为隐藏,这样就不会让用户看到延迟的问题,然后等加载完再显示, 元素先设置为隐藏 加载完再显示 ...