题目链接

Pollard_Rho:http://blog.csdn.net/thy_asdf/article/details/51347390

#include<cstdio>
#include<cctype>
#include<algorithm>
#define gc() getchar()
const int p[]={2,3,5,7,11,13,17,19};
typedef long long LL;
LL Ans; inline LL read()
{
LL now=0,f=1;register char c=gc();
for(;!isdigit(c);c=gc()) if(c=='-') f=-1;
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now*f;
}
inline LL Mult(LL a,LL b,LL p)//O(1)快速乘
{
LL tmp=a*b-(LL)((long double)a/p*b+1e-8)*p;
return tmp<0?tmp+p:tmp;
}
LL Fast_Pow(LL n,LL k,LL p)
{
LL t=1;
for(;k;k>>=1,n=n*n%p)
if(k&1) t=t*n%p;
return t;
}
bool Miller_Rabin(LL n)
{
if(n==2) return 1;
if(!(n&1)||n==1) return 0;
for(int i=0;i<8;++i)
if(n==p[i]) return 1;
else if(!(n%p[i])) return 0;
LL u=n-1,now,las; int t=0;
while(!(u&1)) u>>=1,++t;
for(int i=0;i<8;++i)
{
now=Fast_Pow(p[i],u,n);
for(int j=1;j<=t;++j)
{
las=now, now=Mult(now,now,n);
if(now==1&&las!=1&&las!=n-1) return 0;
}
if(now!=1) return 0;
}
return 1;
}
LL gcd(LL x,LL y)
{
return y?gcd(y,x%y):x;
}
LL Rho(LL n,LL delta)
{//现要分解n,有两个随机数x,y,若p=gcd(x-y,n)!=1&&p!=n,那么p为n的一个约数...省略
LL x=rand()%n,y=x,p=1; int k=2;//设定k为此次路径长
for(int i=1;p==1;++i)
{
x=(Mult(x,x,n)+delta)%n;//随机函数f(x)=x*x+d
p=gcd(std::abs(x-y),n);//多次生成随机数,直至找到p是n的一个因子
if(i==k) y=x,k<<=1;//达到k次后把y赋值为x。路径每次倍长
}
return p;
}
void Find(LL n)
{
if(n==1) return;
if(Miller_Rabin(n)) {Ans=std::max(Ans,n);/*fac[++cnt]=n;*/ return;}
LL t=n;
while(t==n) t=Rho(n,rand()%(n-1)+1);
//t=n说明这个随机函数会导致走到n的环上,再换一个重试即可
Find(t), Find(n/t);
} int main()
{
#ifndef ONLINE_JUDGE
freopen("3667.in","r",stdin);
#endif int t=read();LL n;
while(t--)
n=read(),Ans=0,Find(n),Ans==n?puts("Prime"):printf("%lld\n",Ans);
return 0;
}

BZOJ.3667.Rabin-Miller算法(MillerRabin PollardRho)的更多相关文章

  1. [Miller-Rabin & Pollard-rho]【学习笔记】

    Miller-Rabin & Pollard-rho 很久之前就学过了...今天重学一遍 利用费马小定理,但不能判断伪素数的情况 基于a的伪素数n: \(a^{n-1} \equiv 1 \p ...

  2. 【模板】SPOJ FACT0 大数分解 miller-rabin & pollard-rho

    http://www.spoj.com/problems/FACT0/en/ 给一个小于1e15的数,将他分解. miller-rabin & pollard-rho模板 #include & ...

  3. bzoj 3667: Rabin-Miller算法【Miller-Rabin】

    Miller-Rabin模板 #include<iostream> #include<cstdio> #include<algorithm> using names ...

  4. BZOJ 3667 Pollard-rho &Miller-Rabin

    论O(1)快速乘和O(logn)快速乘的差距-. //By SiriusRen #include <cstdio> #include <algorithm> using nam ...

  5. BZOJ 3667: Rabin-Miller算法 (Pollard-Rho 模板)

    说实话,我知道每一步都干啥,但我完全不知道为啥这么做,也不知道为什么是正确的,反正会用就行了~ #include <cmath> #include <cstdio> #incl ...

  6. 【刷题】BZOJ 3667 Rabin-Miller算法

    Input 第一行:CAS,代表数据组数(不大于350),以下CAS行,每行一个数字,保证在64位长整形范围内,并且没有负数.你需要对于每个数字:第一,检验是否是质数,是质数就输出Prime 第二,如 ...

  7. bzoj 3667 Rabin-Miller算法

    #include<iostream> #include<cstdio> #include<algorithm> #include<cstring> #i ...

  8. 数论入门2——gcd,lcm,exGCD,欧拉定理,乘法逆元,(ex)CRT,(ex)BSGS,(ex)Lucas,原根,Miller-Rabin,Pollard-Rho

    数论入门2 另一种类型的数论... GCD,LCM 定义\(gcd(a,b)\)为a和b的最大公约数,\(lcm(a,b)\)为a和b的最小公倍数,则有: 将a和b分解质因数为\(a=p1^{a1}p ...

  9. 梅森素数 判定总结 - Lucas-Lehmer算法 & Miller-rabin算法

    梅森素数 定义: if m是一个正整数 and 2^m-1是一个素数 then m是素数 if m是一个正整数 and m是一个素数 then M(m)=2^m-1被称为第m个梅森数 if p是一个素 ...

随机推荐

  1. python日志和异常

    “日志”转载:http://www.cnblogs.com/dkblog/archive/2011/08/26/2155018.html "异常"转载:http://www.cnb ...

  2. MR运动静止用户区分

    1.客户端打开菜单[MR]-[MR室内室外判定设置] 设置主小区是室外站且主小区信号比较强时RSRP门限 2.设置"上报数据用户临小区切换次数门限设置"值为15 mysql中t_m ...

  3. dubbo系列一、dubbo背景介绍、微服务拆分

    一.背景 随着互联网的发展,网站应用的规模不断扩大,常规的垂直应用架构已无法应对,分布式服务架构以及流动计算架构势在必行,亟需一个治理系统确保架构有条不紊的演进. 二.传统应用到分布式应用的演进过程 ...

  4. opencv学习笔记(九)Mat 访问图像像素的值

    对图像的像素进行访问,可以实现空间增强,反色,大部分图像特效系列都是基于像素操作的.图像容器Mat是一个矩阵的形式,一般情况下是二维的.单通道灰度图一般存放的是<uchar>类型,其数据存 ...

  5. swift的一些知识点(不断完善中)

    首先,隆重推荐文章http://www.infoq.com/cn/articles/swift-brain-gym-optional swift 烧脑体操!目前有4篇文章,说的都很好! 1. 应该充分 ...

  6. javascript之随手笔记

    1.toFixed()方法 toFixed() 方法可把 Number 四舍五入为指定小数位数的数字. 链接 2..在js中,{}等于new Object(),都是在堆中创建一块区域

  7. 【ES】学习2-搜索

    1.空搜索 返回所有索引下的所有文档 GET /_search 设置超时.timeout 不是停止执行查询,它仅仅是告知正在协调的节点返回到目前为止收集的结果并且关闭连接.在后台,其他的分片可能仍在执 ...

  8. PHP中的10个实用函数

    1.php_check_syntax 这个函数可以用来检查特定文件中的PHP语法是否正确. <?php $error_message = ""; $filename = &q ...

  9. Codeforces 519D A and B and Interesting Substrings(二维map+前缀和)

    题目链接:http://codeforces.com/problemset/problem/519/D 题目大意:给你一串字符串s仅由小写字母组成,并且对于'a'~'z'都给了一个值.求子串t满足t的 ...

  10. springMVC源码分析--页面跳转RedirectView(三)

    之前两篇博客springMVC源码分析--视图View(一)和springMVC源码分析--视图AbstractView和InternalResourceView(二)中我们已经简单的介绍了View相 ...