题目链接

loj#2015. 「SCOI2016」妖怪

题解

对于每一项展开

的到\(atk+\frac{dnf}{b}a + dnf + \frac{atk}{a} b\)

令$T = \frac{a}{b} $

原式$=atk+Tdnf + dnf + \frac{atk}{T} $

这就是那个单峰的对勾函数,

把单峰函数复合为求最值,发现也是个单峰函数(下凸壳)

三分就好了

或者维护一个最大值得下凸壳

代码

#include<cstdio>
#include<algorithm> inline int read() {
int x = 0,f = 1;
char c = getchar();
while(c < '0' || c > '9') c = getchar();
while(c <= '9' && c >= '0') x = x * 10 + c - '0',c = getchar();
return x * f;
}
#define db double
const int maxn = 5000007; db atk[maxn],dnf[maxn];
int n;
db calc(db T) {
double ret = 0.0;
for(int i = 1;i <= n;++ i) {
db tmp = dnf[i] + atk[i] + dnf[i] / T + atk[i] * T;
ret = std::max(tmp,ret);
}
return ret;
}
int main() {
n = read();
for(int i = 1;i <= n;++ i)
scanf("%lf%lf",atk + i,dnf + i);
db l = 0,r = 10.0;
for(;r - l >= (1e-12);) {
db m1 = l + (r - l) / 3.0,m2 = r - (r - l) / 3.0;
db c1 = calc(m1),c2 = calc(m2);
if(c1 > c2) l = m1;
else r = m2;
}
printf("%.4lf\n",std::min(calc(r),calc(l))) ;
return 0;
}

loj#2015. 「SCOI2016」妖怪 凸函数/三分的更多相关文章

  1. LOJ#2015. 「SCOI2016」妖怪(凸包)

    传送门 首先可以把每个妖怪看成二维平面上的一个点,那么每一个环境\((a,b)\)就可以看成一条斜率\(k=-\frac{b}{a}\)的过该点的直线,战斗力就是这条直线在两坐标轴上的截距之和 对于每 ...

  2. 【LOJ】 #2015. 「SCOI2016」妖怪

    题解 这道题教会我很多东西,虽然它是个傻逼三分 1.long double的运算常数是巨大的 2.三分之前的界要算对!一定要算准,不要想一个直接写上! 3.三分100次也就只能把精度往里推20多位,可 ...

  3. 「SCOI2016」妖怪 解题报告

    「SCOI2016」妖怪 玄妙...盲猜一个结论,然后过了,事后一证,然后假了,数据真水 首先要最小化 \[ \max_{i=1}^n (1+k)x_i+(1+\frac{1}{k})y_i \] \ ...

  4. loj#2013. 「SCOI2016」幸运数字 点分治/线性基

    题目链接 loj#2013. 「SCOI2016」幸运数字 题解 和树上路径有管...点分治吧 把询问挂到点上 求出重心后,求出重心到每个点路径上的数的线性基 对于重心为lca的合并寻味,否则标记下传 ...

  5. loj#2016. 「SCOI2016」美味

    题目链接 loj#2016. 「SCOI2016」美味 题解 对于不带x的怎么做....可持久化trie树 对于带x,和trie树一样贪心 对于答案的二进制位,从高往低位贪心, 二进制可以表示所有的数 ...

  6. loj#2012. 「SCOI2016」背单词

    题目链接 loj#2012. 「SCOI2016」背单词 题解 题面描述有点不清楚. 考虑贪心 type1的花费一定不会是优的,不考虑, 所以先把后缀填进去,对于反串建trie树, 先填父亲再填儿子, ...

  7. loj #2013. 「SCOI2016」幸运数字

    #2013. 「SCOI2016」幸运数字 题目描述 A 国共有 n nn 座城市,这些城市由 n−1 n - 1n−1 条道路相连,使得任意两座城市可以互达,且路径唯一.每座城市都有一个幸运数字,以 ...

  8. LOJ #2013「SCOI2016」幸运数字

    时限为什么这么大啊 明摆着放多$ log$的做法过啊$QAQ$ LOJ #2013 题意 有$ Q$次询问,每次询问树上一条链,点有点权,你需要选择一些链上的点使得异或和尽量大 点数$ \leq 2* ...

  9. LOJ#2014「SCOI2016」萌萌哒(倍增,并查集优化连边)

    题面 点此看题 题意很明白,就不转述了吧. 题解 题目相当于告诉了我们若干等量关系,每个限制 l 1 , r 1 , l 2 , r 2 \tt l_1,r_1,l_2,r_2 l1​,r1​,l2​ ...

随机推荐

  1. 用nodejs做一下发送邮件例子

    var nodemailer = require("nodemailer"); var transport = nodemailer.createTransport("S ...

  2. ES系列五、ES6.3常用api之搜索类api

    1.搜索api 1.1.routing:路由 执行搜索时,它将广播到所有索引/索引分片(副本之间的循环).可以通过提供routing参数来控制将搜索哪些分片.例如,在索引book时,路由值可以是nam ...

  3. ExtJs常用布局--layout详解(含实例)

    序言: 笔者用的ExtJs版本:ext-3.2.0 ExtJs常见的布局方式有:border.form.absolute.column.accordion.table.fit.card.anchor ...

  4. 使用Springboot快速搭建SSM框架

    Spring Boot设计目的是用来简化Spring应用的初始搭建以及开发过程.该框架使用了特定的方式来进行配置,从而使开发人员不再需要定义样板化的配置. 一.环境准备 Idea 2017 或 201 ...

  5. C++ code:string stream(string流)

    如果有一个文件aaa.txt,有若干行,不知道每行中含有几个整数,要编程输出每行的整数之和,该如何实现? 由于cin>>不能辨别空格与回车的差异,因此只能用getline的方式逐行读入数据 ...

  6. hdu2888 二维ST表(RMQ)

    二维RMQ其实和一维差不太多,但是dp时要用四维 /* 二维rmq */ #include<iostream> #include<cstring> #include<cs ...

  7. 基于TCPCopy的仿真压测方案

    一.tcpcopy工具介绍 tcpcopy 是一个分布式在线压力测试工具,可以将线上流量拷贝到测试机器,实时的模拟线上环境,达到在程序不上线的情况下实时承担线上流量的效果,尽早发现 bug,增加上线信 ...

  8. vue组件库(二):基于verdaccio工具npm私服搭建

    大纲 搭建npm私服的必要性 搭建npm私服的主要操作 一.搭建npm私服的必要性 二.搭建npm私服的主要操作 1.环境准备 确保服务器已安装以下包: node(必须) 安装了nodenpm,如果想 ...

  9. 委托Func和Action【转】

    平时我们如果要用到委托一般都是先声明一个委托类型,比如: private delegate string Say(); string说明适用于这个委托的方法的返回类型是string类型,委托名Say后 ...

  10. 《剑指offer》-双栈实现队列

    题目描述 用两个栈来实现一个队列,完成队列的Push和Pop操作. 队列中的元素为int类型. 很基本的STL容器操作了,应该可以1A的,但是忘记返回值的时候,clang的报错感觉并不友好啊.. cl ...