loj#2015. 「SCOI2016」妖怪 凸函数/三分
题目链接
题解
对于每一项展开
的到\(atk+\frac{dnf}{b}a + dnf + \frac{atk}{a} b\)
令$T = \frac{a}{b} $
原式$=atk+Tdnf + dnf + \frac{atk}{T} $
这就是那个单峰的对勾函数,
把单峰函数复合为求最值,发现也是个单峰函数(下凸壳)
三分就好了
或者维护一个最大值得下凸壳
代码
#include<cstdio>
#include<algorithm>
inline int read() {
int x = 0,f = 1;
char c = getchar();
while(c < '0' || c > '9') c = getchar();
while(c <= '9' && c >= '0') x = x * 10 + c - '0',c = getchar();
return x * f;
}
#define db double
const int maxn = 5000007;
db atk[maxn],dnf[maxn];
int n;
db calc(db T) {
double ret = 0.0;
for(int i = 1;i <= n;++ i) {
db tmp = dnf[i] + atk[i] + dnf[i] / T + atk[i] * T;
ret = std::max(tmp,ret);
}
return ret;
}
int main() {
n = read();
for(int i = 1;i <= n;++ i)
scanf("%lf%lf",atk + i,dnf + i);
db l = 0,r = 10.0;
for(;r - l >= (1e-12);) {
db m1 = l + (r - l) / 3.0,m2 = r - (r - l) / 3.0;
db c1 = calc(m1),c2 = calc(m2);
if(c1 > c2) l = m1;
else r = m2;
}
printf("%.4lf\n",std::min(calc(r),calc(l))) ;
return 0;
}
loj#2015. 「SCOI2016」妖怪 凸函数/三分的更多相关文章
- LOJ#2015. 「SCOI2016」妖怪(凸包)
传送门 首先可以把每个妖怪看成二维平面上的一个点,那么每一个环境\((a,b)\)就可以看成一条斜率\(k=-\frac{b}{a}\)的过该点的直线,战斗力就是这条直线在两坐标轴上的截距之和 对于每 ...
- 【LOJ】 #2015. 「SCOI2016」妖怪
题解 这道题教会我很多东西,虽然它是个傻逼三分 1.long double的运算常数是巨大的 2.三分之前的界要算对!一定要算准,不要想一个直接写上! 3.三分100次也就只能把精度往里推20多位,可 ...
- 「SCOI2016」妖怪 解题报告
「SCOI2016」妖怪 玄妙...盲猜一个结论,然后过了,事后一证,然后假了,数据真水 首先要最小化 \[ \max_{i=1}^n (1+k)x_i+(1+\frac{1}{k})y_i \] \ ...
- loj#2013. 「SCOI2016」幸运数字 点分治/线性基
题目链接 loj#2013. 「SCOI2016」幸运数字 题解 和树上路径有管...点分治吧 把询问挂到点上 求出重心后,求出重心到每个点路径上的数的线性基 对于重心为lca的合并寻味,否则标记下传 ...
- loj#2016. 「SCOI2016」美味
题目链接 loj#2016. 「SCOI2016」美味 题解 对于不带x的怎么做....可持久化trie树 对于带x,和trie树一样贪心 对于答案的二进制位,从高往低位贪心, 二进制可以表示所有的数 ...
- loj#2012. 「SCOI2016」背单词
题目链接 loj#2012. 「SCOI2016」背单词 题解 题面描述有点不清楚. 考虑贪心 type1的花费一定不会是优的,不考虑, 所以先把后缀填进去,对于反串建trie树, 先填父亲再填儿子, ...
- loj #2013. 「SCOI2016」幸运数字
#2013. 「SCOI2016」幸运数字 题目描述 A 国共有 n nn 座城市,这些城市由 n−1 n - 1n−1 条道路相连,使得任意两座城市可以互达,且路径唯一.每座城市都有一个幸运数字,以 ...
- LOJ #2013「SCOI2016」幸运数字
时限为什么这么大啊 明摆着放多$ log$的做法过啊$QAQ$ LOJ #2013 题意 有$ Q$次询问,每次询问树上一条链,点有点权,你需要选择一些链上的点使得异或和尽量大 点数$ \leq 2* ...
- LOJ#2014「SCOI2016」萌萌哒(倍增,并查集优化连边)
题面 点此看题 题意很明白,就不转述了吧. 题解 题目相当于告诉了我们若干等量关系,每个限制 l 1 , r 1 , l 2 , r 2 \tt l_1,r_1,l_2,r_2 l1,r1,l2 ...
随机推荐
- Linux下的换行符\n\r以及txt和word文档的使用
Linux doc WINDOWS下记事本编写的文档和LINUX下VIM或者GEDIT等编写的文档的不同! 例如WINDOWS下编写的SH脚本,放到LINUX下执行可能会出错. 解决方法: 原因是:W ...
- python中 __name__及__main()__的妙处
python中 __name__及__main()__的妙处 #hello.pydef sayHello(): str="hello" print(str); if __name_ ...
- vim 超强发行版
推荐第一个: https://github.com/spf13/spf13-vim https://github.com/Spacevim/Spacevim https://github.com/JB ...
- 004_Nginx 499错误的原因及解决方法
一. 今天进行系统维护,发现了大量的499错误, 499错误 ngx_string(ngx_http_error_495_page), /* 495, https certificate error ...
- 视觉显著性检测(Visual saliency detection)相关概念
视觉显著性检测(Visual saliency detection)指通过智能算法模拟人的视觉特点,提取图像中的显著区域(即人类感兴趣的区域). 视觉注意机制(Visual Attention Mec ...
- iOS中按钮点击事件处理方式
写在前面 在iOS开发中,时常会用到按钮,通过按钮的点击来完成界面的跳转等功能.按钮事件的实现方式有多种,其中 较为常用的是目标-动作对模式.但这种方式使得view与controller之间的耦合程度 ...
- Django2.0使用dos新建项目
由于本人的Pycharm不能直接生成Django项目,所以用命令行来生成项目,搭建此项目,请先搭建好环境 环境:PyCharm Python3.5.2 Django 2.0 1.使用dos进入工作目 ...
- python 全栈开发,Day100(restful 接口,DRF组件,DRF跨域(cors组件))
昨日内容回顾 1. 为什么要做前后端分离? - 前后端交给不同的人来编写,职责划分明确.方便快速开发 - 针对pc,手机,ipad,微信,支付宝... 使用同一个接口 2. 简述http协议? - 基 ...
- brew装snappy
brew装snappy,我在mac上已经开了socks5代理,也尝试了lantern或者duotai.org,结果都下载不动. 解决方法:把snappy包手动从浏览器下载,然后放到缓存目录,再执行br ...
- JavaScrit全面总结
前端技术的发展变化太快了,各种各样的框架.再变也离不开js.所以,在此把js的高级语法总结一遍. js解析和执行包括:全局和函数 一:全局预处理 <script type="te ...