Jacobian矩阵和Hessian矩阵
1.Jacobian矩阵
在矩阵论中,Jacobian矩阵是一阶偏导矩阵,其行列式称为Jacobian行列式。假设 函数 $f:R^n \to R^m$, 输入是向量 $x \in R^n$ ,输出为向量 $f(x) \in R^m$ ,那么对应的Jacobian矩阵 $J$ 是一个 $m*n$ 的矩阵,其定义如下:
\[\mathbf J = \frac{d\mathbf f}{d\mathbf x} = \begin{bmatrix}\dfrac{\partial \mathbf{f}}{\partial x_1} & \cdots & \dfrac{\partial \mathbf{f}}{\partial x_n} \end{bmatrix}= \begin{bmatrix}\dfrac{\partial f_1}{\partial x_1} & \cdots & \dfrac{\partial f_1}{\partial x_n}\\
\vdots & \ddots & \vdots\\
\dfrac{\partial f_m}{\partial x_1} & \cdots & \dfrac{\partial f_m}{\partial x_n} \end{bmatrix}\]
或者,也可以记作:
\[\mathbf J_{i,j} = \frac{\partial f_i}{\partial x_j} .\]
2.Hessian矩阵
假设函数 $f:R^n \to R$ 的输入 $x\in R^n$,输出 $f(x)\in R$。如果函数$f$的二阶偏导全部存在,并在定义域内连续,那么函数$f$的Hessian矩阵$H$
Jacobian矩阵和Hessian矩阵的更多相关文章
- 三维重建面试4:Jacobian矩阵和Hessian矩阵
在使用BA平差之前,对每一个观测方程,得到一个代价函数.对多个路标,会产生一个多个代价函数的和的形式,对这个和进行最小二乘法进行求解,使用优化方法.相当于同时对相机位姿和路标进行调整,这就是所谓的BA ...
- Jacobian矩阵、Hessian矩阵和Newton's method
在寻找极大极小值的过程中,有一个经典的算法叫做Newton's method,在学习Newton's method的过程中,会引入两个矩阵,使得理解的难度增大,下面就对这个问题进行描述. 1, Jac ...
- 梯度vs Jacobian矩阵vs Hessian矩阵
梯度向量 定义: 目标函数f为单变量,是关于自变量向量x=(x1,x2,-,xn)T的函数, 单变量函数f对向量x求梯度,结果为一个与向量x同维度的向量,称之为梯度向量: 1. Jacobian 在向 ...
- Hessian矩阵
http://baike.baidu.com/link?url=o1ts6Eirjn5mHQCZUHGykiI8tDIdtHHOe6IDXagtcvF9ncOfdDOzT8tmFj41_DEsiUCr ...
- Hessian矩阵【转】
http://blog.sina.com.cn/s/blog_7e1ecaf30100wgfw.html 在数学中,海塞矩阵是一个自变量为向量的实值函数的二阶偏导数组成的方块矩阵,一元函数就是二阶导, ...
- Hessian矩阵与多元函数极值
Hessian矩阵与多元函数极值 海塞矩阵(Hessian Matrix),又译作海森矩阵,是一个多元函数的二阶偏导数构成的方阵.虽然它是一个具有悠久历史的数学成果.可是在机器学习和图像处理(比如SI ...
- Hessian矩阵与牛顿法
Hessian矩阵与牛顿法 牛顿法 主要有两方面的应用: 1. 求方程的根: 2. 求解最优化方法: 一. 为什么要用牛顿法求方程的根? 问题很多,牛顿法 是什么?目前还没有讲清楚,没关系,先直观理解 ...
- 【机器学习】梯度、Hessian矩阵、平面方程的法线以及函数导数的含义
想必单独论及" 梯度.Hessian矩阵.平面方程的法线以及函数导数"等四个基本概念的时候,绝大部分人都能够很容易地谈个一二三,基本没有问题. 其实在应用的时候,这几个概念经常被混 ...
- 梯度、Hessian矩阵、平面方程的法线以及函数导数的含义
本文转载自: Xianling Mao的专栏 =========================================================================== 想 ...
随机推荐
- [BZOJ2257][Jsoi2009]瓶子和燃料(数学)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2257 分析: 1.先考虑确定的瓶子下的最小体积是多少 ①假设只有两个瓶子v1,v2,易 ...
- eclipse技巧总结
如果遇到错误或警告,先试试统一的方法:在problems view中,右键error或者warnning,选择quick fix serial ID并不常用,如果不实现它,eclipse会给出一 ...
- Android 轻量级输入校验库:Fire Eye
Fire Eye是一款轻量级简单易用的Android校验库. FireEye 2.0 在 1.0 的基础上,全部重写了代码,并优化了架构,性能上和逻辑上都大大提升.只需要几行代码,即可验证用户输入,并 ...
- 1020理解MySQL——索引与优化
转自http://www.cnblogs.com/hustcat/archive/2009/10/28/1591648.html 写在前面:索引对查询的速度有着至关重要的影响,理解索引也是进行数据库性 ...
- Hessian Matrix
函数\(f\)的Hessian矩阵由是由它的二阶偏导数组成的方阵 \[ H = \begin{bmatrix} \dfrac{\partial^2 f}{\partial x_1^2} & \ ...
- 使用maven镜像
maven 的安装目录下的 conf 文件夹下有个 settings.xml 文件,编辑该文件 在<mirrors>中插入: <mirror> <id>repo2& ...
- 解决npm install缓慢
http://npm.taobao.org/ 使用淘宝提供的cnpm替代npm
- CSS3动画属性之Animation
首先定义一个动画规则: @keyframes mymove { from {top:0px;} to {top:200px;} } @-moz-keyframes mymove /* Firefox ...
- jquery.ui.widget详解
案例详解 <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <titl ...
- C#-ade.net-实体类、数据访问类
实体类.数据访问类 是由封装演变而来,使对数据的访问更便捷,使用时只需要调用即可,无需再次编写代码 实体类是按照数据库表的结构封装起来的一个类 首先,新建文件夹 App_Code ,用于存放数据库类等 ...