题意

求$ \sum_{i=1}^n gcd(i,n) $ 给定 $n(1\le n\le 2^{32}) $。

链接

题解

欧拉函数 $φ(x)$ :1到x-1有几个和x互质的数。

gcd(i,n)必定是n的一个约数。

若p是n的约数,那么gcd(i,n)==p的有$φ(n/p)$个数,因为要使gcd(i,n)==p,i/p和n/p必须是互质的。

那么就是求i/p和n/p互质的i在[1,n]里有几个,就等价于 1/p,2/p,...,n/p 里面有几个和n/p互质,即φ(n/p)。

求和的话,约数为p的有φ(n/p),所以就是p*φ(n/p),同时把约数为n/p的加上去,i*i==n特判一下。

#include<cstdio>
#include<cmath>
#define ll long long
ll n,ans,i;
ll euler(int x)
{
int res=x;
for(int i=; i<=sqrt(x); i++)
if(x%i==)
{
res=res/i*(i-);
while(x%i==)x/=i;
}
if(x>)res=res/x*(x-);
return res;
}
int main()
{
while(~scanf("%lld",&n))
{
ans=;
for(i=; i<sqrt(n); i++)if(n%i==)
ans+=i*euler(n/i)+n/i*euler(i);
if(i*i==n)ans+=i*euler(i);
printf("%lld\n",ans);
}
}

另外一种做法是:

素数a有$φ(a^b)=a^b-a^(b-1)=(a-1)*a^b$。

且有 $\sum_{i=1}^n gcd(i,a^b)$

$=φ(a^b)+a*φ(a^(b-1))+...+(a^b)*φ(1)$

$=b*(a-1)*(a^(b-1))+a^b$。

由$n=p_1^{k_1}+p_2^{k_2}+...+p_s^{k_s}$,

可得$\sum_{i=1}^n gcd(i,n)$

$=\sum_{i=1}^n gcd(i,p_1^{k_1})*\sum_{i=1}^n gcd(i,p_2^{k_2})*...*\sum_{i=1}^n gcd(i,p_s^{k_s})$

(我觉得这个理解起来不容易)。

#include<cstdio>
long long n,i,k,pk,ans;
int main ()
{
while(scanf("%lld",&n)!=EOF)
{
ans=;
for(i=;i*i<=n;++i)
{
k=,pk=;
while(n%i==)
{
n=n/i;
k++;
pk*=i;
}
ans*=k*(pk-pk/i)+pk;//φ[p^k]=k×(p^k-p^(k-1))+p^k
}
if(n>)ans*=*n-;
printf("%lld\n",ans);
}
return ;
}

【POJ 2480】Longge's problem(欧拉函数)的更多相关文章

  1. poj 2480 Longge's problem [ 欧拉函数 ]

    传送门 Longge's problem Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7327   Accepted: 2 ...

  2. POJ 2480 Longge's problem 欧拉函数—————∑gcd(i, N) 1<=i <=N

    Longge's problem Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6383   Accepted: 2043 ...

  3. poj 2480 Longge's problem 欧拉函数+素数打表

    Longge's problem   Description Longge is good at mathematics and he likes to think about hard mathem ...

  4. poj 2480 Longge's problem 积性函数

    思路:首先给出几个结论: 1.gcd(a,b)是积性函数: 2.积性函数的和仍然是积性函数: 3.phi(a^b)=a^b-a^(b-1); 记 f(n)=∑gcd(i,n),n=p1^e1*p2^e ...

  5. 题解报告:poj 2480 Longge's problem(欧拉函数)

    Description Longge is good at mathematics and he likes to think about hard mathematical problems whi ...

  6. POJ 2480 Longge's problem (积性函数,欧拉函数)

    题意:求∑gcd(i,n),1<=i<=n思路:f(n)=∑gcd(i,n),1<=i<=n可以知道,其实f(n)=sum(p*φ(n/p)),其中p是n的因子.为什么呢?原因 ...

  7. poj 3090 &amp;&amp; poj 2478(法雷级数,欧拉函数)

    http://poj.org/problem?id=3090 法雷级数 法雷级数的递推公式非常easy:f[1] = 2; f[i] = f[i-1]+phi[i]. 该题是法雷级数的变形吧,答案是2 ...

  8. BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2553  Solved: 1565[Submit][ ...

  9. POJ 2478 Farey Sequence(欧拉函数前n项和)

    A - Farey Sequence Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u ...

  10. Bzoj 2705: [SDOI2012]Longge的问题 欧拉函数,数论

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1959  Solved: 1229[Submit][ ...

随机推荐

  1. uva10344 23 out of 5

    Your task is to write a program that can decide whether you can nd an arithmetic expression consisti ...

  2. Tomcat 开启 SSL

    生成keystore /usr/java/default/bin/keytool -genkey -alias tomcat -keyalg RSA -keystore ~/tomcat.keysto ...

  3. PAT 1005. 继续(3n+1)猜想 (25)

    卡拉兹(Callatz)猜想已经在1001中给出了描述.在这个题目里,情况稍微有些复杂. 当我们验证卡拉兹猜想的时候,为了避免重复计算,可以记录下递推过程中遇到的每一个数.例如对n=3进行验证的时候, ...

  4. matlab FDR校正

    http://home.52brain.com/forum.php?mod=viewthread&tid=27066&page=1#pid170857 http://www.mathw ...

  5. 小tips: 使用&#x3000;等空格实现最小成本中文对齐

    一.重见天日第二春 11年的时候,写了篇文章“web页面相关的一些常见可用字符介绍”,这篇文章里面藏了个好东西,就是使用一些空格实现个数不等的中文对齐或等宽.见下表: 字符以及HTML实体 描述以及说 ...

  6. QT 网络编程三(TCP版)

    QT客户端 //widget.h #ifndef WIDGET_H #define WIDGET_H #include <QWidget> #include <QTcpSocket& ...

  7. 80端口未占用,apache无法启动解决办法

    网上很多关于apache无法启动的原因,新手遇到最多的是80端口被占用. 今天为了解决apache和tomcat端口共存问题,修改了httpd.conf的配置,由于增加位置没有做明显标识,重启apac ...

  8. 让 innerHTML 进来的 script 代码跑起来

    今天来简单聊聊如何让 innerHTML 进来的 scrip 代码跑起来的问题. 前台请求一个接口,接口返回一些 HTML 标签拼接成的字符串,以供前端直接 innerHTML 生成 DOM 元素,这 ...

  9. matlab eps

    matlab eps eps是一个函数.当没有参数时默认参数是1.返回的是该参数的精度. 也就是说单个的eps实际上是eps(1),表示的是1的精度. 这里要说一下精度的概念.浮点数所能表示的数值范围 ...

  10. 关于document.getElement获取元素返回值的问题

    获取网页元素有很多种方法,如下: document.all[];返回HTMLElement对象 document.all.tags[];返回NodeList对象,类似数组 document.getEl ...