MT【18】幂平均不等式的证明

评:证明时对求导要求较高,利用这个观点,对平时熟悉的调和平均,几何平均,算术平均,平方平均有了更深
刻的认识.
MT【18】幂平均不等式的证明的更多相关文章
- MT【39】构造二次函数证明
这种构造二次函数的方法最早接触的应该是在证明柯西不等式时: 再举一例: 最后再举个反向不等式的例子: 评:此类题目的证明是如何想到的呢?他们都有一个明显的特征$AB\ge(\le)C^2$,此时构造二 ...
- LTE引理——解决数论竞赛题的利器
LTE (Lifting The Exponent Lemma)引理是一个解指数型不定方程的强力工具.它在Olympiad folklore非常知名,虽然它的起源已经无从查找了.它和Hensel’s ...
- MT【190】绝对值的和
(2012浙江压轴题)已知$a>0,b\in R$,函数$f(x)=4ax^3-2bx-a+b$.1)证明:当$0\le x\le 1$时,i)函数$f(x)$的最大值为$|2a-b|+a;$i ...
- 证明 O(n/1+n/2+…+n/n)=O(nlogn)
前言 在算法中,经常需要用到一种与调和级数有关的方法求解,在分析该方法的复杂度时,我们会经常得到\(O(\frac{n}{1}+\frac{n}{2}+\ldots+\frac{n}{n})\)的复杂 ...
- 算法题----称硬币: 2n(并不要求n是2的幂次方)个硬币,有两个硬币重量为m+1, m-1, 其余都是m 分治 O(lgn)找出假币
Description: 有2n个硬币和一个天平,其中有一个质量是m+1, 另一个硬币质量为m-1, 其余的硬币质量都是m. 要求:O(lgn)时间找出两枚假币 注意: n不一定是2的幂次方 算法1: ...
- 《A First Course in Probability》-chaper8-极限定理-各类不等式
詹森不等式: 证明:
- 《A First Course in Probability》-chaper8-极限定理-切比雪夫不等式
基于对概率问题的抽象化,通过期望.方差.随机变量X及其概率,我们想要通过几个量推出另外几个量的特征,笼统的来说,极限定理起到的作用便在于此 切比雪夫不等式: 在证明切比雪夫不等式之前,我们先要完成对马 ...
- Markov不等式,Chebyshev不等式
在切诺夫界的证明中用到了Markov不等式,证明于此~顺便把Chebyshev不等式也写上了
- 从Jensen不等式到Minkowski不等式
整理即证 参考资料: [1].琴生不等式及其加权形式的证明.Balbooa.https://blog.csdn.net/balbooa/article/details/79357839.2018.2 ...
随机推荐
- 通过jQuery Ajax使用FormData对象上传文件 (转载)
XMLHttpRequest Level 2 添加了一个新的接口——FormData.与普通的 Ajax 相比,使用 FormData 的最大优点就是我们可以异步上传二进制文件.jQuery 2.0+ ...
- Spring Boot 之属性读写详解
SpringBoot 之属性读写详解 加载 property 顺序 随机属性 命令行属性 Application 属性文件 Profile 特定属性 属性中的占位符 YAML 属性 访问属性 多 pr ...
- Jmeter(三十五)_精确实现网页爬虫
Jmeter实现了一个网站文章的爬虫,可以把所有文章分类保存到本地文件中,并以文章标题命名 它原理就是对网页提交一个请求,然后把返回的所有值提取出来,利用ForEach控制器去实现遍历.下面来介绍一下 ...
- json模块 & pickle模块
之前学习过用eval内置方法可以将一个字符串转成python对象,不过,eval方法是有局限性的,对于普通的数据类型,json.loads和eval都能用,但遇到特殊类型的时候,eval就不管用了,所 ...
- 个人作业Week2-代码复审(修改明确了要求)
代码复审 零,说在前面的话 大家完成了个人项目之后,都写了很多代码. 这些代码可能: 大括号换行/不换行 使用tab缩进/使用空格缩进 变量名函数名的定义很好/不好 每个函数都有详细的注释解释函数的功 ...
- 20135337——linux实践三:ELF文件格式分析(32位系统)
ELF文件格式分析 可重定位文件 十六进制形式显示内容 显示各个段.符号表相关信息 查看各个段信息 elf文件头信息 段表 符号表信息 查看堆栈 具体分析 1.ELF文件头信息(小字节优先,均十六进制 ...
- Spring使用Cache、整合Ehcache(转)
今天在做Spring使用Cache.整合Ehcache时发现一篇非常好的文章,原文地址 http://elim.iteye.com/blog/2123030 从3.1开始,Spring引入了对Cach ...
- eclipse插件wordwrap
一行代码很长,浏览不方便,安装wordwrap可以自动折行. help->install new software-,在Workwith输入wordwrap - http://ahtik.com ...
- 使用composer遇到的问题及解决方法
可以尝试利用composer下载Yii框架,编辑composer.json文件: { "require":{ "yiisoft/yii2":"~2.0 ...
- Spring Framework: @RestController vs @Controller
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/bind/annota ...