复旦大学2017--2018学年第一学期(17级)高等代数I期末考试第六大题解答
六、(本题10分) 设 $M_n(K)$ 为数域 $K$ 上的 $n$ 阶方阵全体构成的线性空间, $A,B\in M_n(K)$, $M_n(K)$ 上的线性变换 $\varphi$ 定义为 $\varphi(X)=AXB$. 证明: $\varphi$ 是幂零线性变换 (存在正整数 $k$, 使得 $\varphi^k=0$) 的充要条件为 $A,B$ 中至少有一个是幂零阵.
充分性 不妨设 $A$ 为幂零阵, 即存在正整数 $k$, 使得 $A^k=0$, 则 $\varphi^k(X)=A^kXB^k=0$, 即 $\varphi^k=0$.
必要性 我们来证必要性的逆否命题 (或者用反证法也可以), 设 $A,B$ 都不是幂零阵, 即对任意给定的正整数 $k$, $A^k\neq 0$, $B^k\neq 0$. 下面用四种方法来证明, 其中第四种是高代 II 的方法.
方法一 (基础矩阵和标准单位向量) 不妨设 $A^k$ 的第 $i$ 列非零, $B^k$ 的第 $j$ 行非零, 即有列向量 $A^ke_i\neq 0$, 行向量 $e_j'B^k\neq 0$, 其中 $e_i=(0,\cdots,1,\cdots,0)'$ 是标准单位列向量, 于是 $$\varphi^k(E_{ij})=A^kE_{ij}B^k=A^ke_ie_j'B^k=(A^ke_i)(e_j'B^k)\neq 0,$$ 即 $\varphi^k\neq 0$ 对任意的正整数 $k$ 都成立.
方法二 (相抵标准型) 设 $P_i,Q_i$ 为非异阵, 使得 $A^k=P_1\mathrm{diag}\{I_r,0\}Q_1$, $B^k=P_2\mathrm{diag}\{I_s,0\}Q_2$, 不妨设 $r\geq s\geq 1$, 于是 $$\varphi^k(Q_1^{-1}P_2^{-1})=A^kQ_1^{-1}P_2^{-1}B^k=P_1\mathrm{diag}\{I_r,0\}\mathrm{diag}\{I_s,0\}Q_2=P_1\mathrm{diag}\{I_s,0\}Q_2\neq 0,$$ 即 $\varphi^k\neq 0$ 对任意的正整数 $k$ 都成立.
方法三 (表示矩阵) 取 $\{E_{ij},\,1\leq i,j\leq n\}$ 为 $M_n(K)$ 的一组基, 则由白皮书的例 6.71 的证明过程可知, $\varphi^k$ 在这组基下的表示矩阵为 Kronecker 积 $A^k\otimes (B^k)'$. 根据矩阵 Kronecker 积的定义 (参考白皮书的 2.2.11 节), 由 $A^k\neq 0$ 和 $B^k\neq 0$ 一定可以推出 $A^k\otimes (B^k)'\neq 0$, 从而 $\varphi^k\neq 0$ 对任意的正整数 $k$ 都成立.
方法四 (特征值) 引用一个高代 II 中常见的结论: 方阵 $A$ 或线性变换 $\varphi$ 是幂零的当且仅当 $A$ 或 $\varphi$ 的特征值全为零. 由于 $A,B$ 都不是幂零阵, 故 $A$ 的特征值 $\lambda_1,\cdots,\lambda_n$ 不全为零, $B$ 的特征值 $\mu_1,\cdots,\mu_n$ 不全为零. 由白皮书的例 6.71 可知, $\varphi$ 的特征值 $\{\lambda_i\mu_j,\,1\leq i,j\leq n\}$ 必不全为零, 从而 $\varphi$ 不是幂零线性变换. $\Box$
注 本题做对的同学共有33人 (得分为8分及以上), 名单如下:
方法1:王熙元、朱柏青、郭宇城、钟函廷、乔嘉玮、疏源源、段蕴珊、李子靖、赵涵洋、朱越峰、陈域、王子聪、李翊瑄
方法2:尚振航、刘宇其、戴逸翔、沈家乐、刘俊晨、史书珣、王语姗、詹远瞩、高怡雯、童梓轩、郑书涵、熊子恺、曹烁、崔镇涛、张雷、吴汉、方博越、李鹏程、王成文健、王丽蓓
复旦大学2017--2018学年第一学期(17级)高等代数I期末考试第六大题解答的更多相关文章
- 复旦大学2015--2016学年第二学期(15级)高等代数II期末考试第六大题解答
六.(本题10分) 设 $n$ 阶复方阵 $A$ 的特征多项式为 $f(\lambda)$, 复系数多项式 $g(\lambda)$ 满足 $(f(g(\lambda)),g'(\lambda))= ...
- 复旦大学2017--2018学年第二学期(17级)高等代数II期末考试第六大题解答
六.(本题10分) 设 $A$ 为 $n$ 阶幂零阵 (即存在正整数 $k$, 使得 $A^k=0$), 证明: $e^A$ 与 $I_n+A$ 相似. 证明 由 $A$ 是幂零阵可知, $A$ ...
- 复旦大学2016--2017学年第二学期(16级)高等代数II期末考试第六大题解答
六.(本题10分) 设 $A$ 为 $n$ 阶半正定实对称阵, $S$ 为 $n$ 阶实反对称阵, 满足 $AS+SA=0$. 证明: $|A+S|>0$ 的充要条件是 $r(A)+r(S)= ...
- 复旦大学2018--2019学年第二学期(18级)高等代数II期末考试第六大题解答
六.(本题10分) 设 $A$ 为 $n$ 阶实对称阵, 证明: $A$ 有 $n$ 个不同的特征值当且仅当对 $A$ 的任一特征值 $\lambda_0$ 及对应的特征向量 $\alpha$, 矩 ...
- 复旦大学2018--2019学年第一学期(18级)高等代数I期末考试第七大题解答
七.(本题10分) 设 $V$ 为 $n$ 维线性空间, $\varphi,\psi$ 是 $V$ 上的线性变换, 满足 $\varphi\psi=\varphi$. 证明: $\mathrm{Ke ...
- 复旦大学2014--2015学年第二学期(14级)高等代数II期末考试第八大题解答
八.(本题10分) 设 $A,B$ 为 $n$ 阶半正定实对称阵, 求证: $AB$ 可对角化. 分析 证明分成两个步骤: 第一步, 将 $A,B$ 中的某一个简化为合同标准形来考虑问题, 这是矩 ...
- 复旦大学2015--2016学年第一学期(15级)高等代数I期末考试第八大题解答
八.(本题10分) 设 $V$ 为数域 $K$ 上的 $n$ 维线性空间, $\varphi$ 为 $V$ 上的线性变换. 子空间 $C(\varphi,\alpha)=L(\alpha,\varp ...
- 复旦大学2014--2015学年第一学期(14级)高等代数I期末考试第七大题解答
七.(本题10分) 设 \(V\) 为数域 \(\mathbb{K}\) 上的 \(n\) 维线性空间, \(S=\{v_1,v_2,\cdots,v_m\}\) 为 \(V\) 中的向量组, 定义 ...
- 复旦大学2013--2014学年第一学期(13级)高等代数I期末考试第七大题解答
七.(本题10分)设 \(A\) 为数域 \(K\) 上的 \(n\) 阶非异阵, 证明: 对任意的对角阵 \(B\in M_n(K)\), \(A^{-1}BA\) 均为对角阵的充分必要条件是 \ ...
随机推荐
- react 使用hooks
react hooks文档 λ yarn add react@16.7.0-alpha.2 λ yarn add react-dom@16.7.0-alpha.2 设置 state import Re ...
- oracle 自定义比较函数
1>自定义比较函数,targetVal的值为字符串,例如:“>=90”,"2~8"等范围格式,dataVal值为字符串. create or replace funct ...
- Win10上使用VS2015编译Caffe2
Caffe2的官网:https://caffe2.ai/ 1.下载.安装及相关准备 在Caffe2的官网点击"Get Started",即进入安装说明页面.官方还未提供编译好的bi ...
- Coffee and Coursework (Easy version)
Coffee and Coursework (Easy version) time limit per test 1 second memory limit per test 256 megabyte ...
- windows下eclipse实现操作虚拟机ubantu中的hdfs hbase
1.首先打开虚拟机,查看虚拟机的ip地址 2.修改C:\Windows\System32\drivers\etc下的主机名与ip的映射文件 3.配置Map/reduce 配置成功后可以查看hdfs文件 ...
- Apache ab并发负载压力测试(python+django+mysql+apache)
如标题,大家都知道秒杀中存在高并发使库存骤然为0,但在我们个人PC或小区域内是模拟不出这样的情景 现在利用 Apache ab并发负载压力测试 1,数据库建入库存字段并映射模型 2,view编写脚本 ...
- Manjaro 玩机记录
需求: 物理机使用linux个人版本系统,最好支持 微软office QQ/Tim 等通讯软件, 软件易安装, 图形界面可修改, 具有多个多个开发环境如:python2 python3 gcc nod ...
- 使用spring data solr 实现搜索关键字高亮显示
后端实现: @Service public class ItemSearchServiceImpl implements ItemSearchService { @Autowired private ...
- jsr-303 参数校验-学习(转)
1.是什么? JSR303 是一套 JavaBean 参数校验的标准,它定义了很多常用的校验注解,比如: ----------------------------------------------- ...
- Python3学习之路~5.11 configparser模块
用于生成和修改常见配置文档,当前模块的名称在 python 2.x 版本中为 ConfigParser, python 3.x 版本中变更为 configparser. 来看一个好多软件的常见文档格式 ...