题目描述

一条单向的铁路线上,依次有编号为 1, 2, …, n 的 n 个火车站。每个火车站都有一个级别,最低为 1 级。现有若干趟车次在这条线路上行驶,每一趟都满足如下要求:如果这趟车次停靠了火车站 x,则始发站、终点站之间所有级别大于等于火车站 x 的都必须停靠。(注意:起始站和终点站自然也算作事先已知需要停靠的站点)

例如,下表是 5 趟车次的运行情况。其中,前 4 趟车次均满足要求,而第 5 趟车次由于停靠了 3 号火车站(2 级)却未停靠途经的 6 号火车站(亦为 2 级)而不满足要求。

现有 m 趟车次的运行情况(全部满足要求),试推算这 n 个火车站至少分为几个不同的级别。

输入输出格式

输入格式:

输入文件为 level.in。

第一行包含 2 个正整数 n, m,用一个空格隔开。

第 i + 1 行(1 ≤ i ≤ m)中,首先是一个正整数 si(2 ≤ si ≤ n),表示第 i 趟车次有 si 个停靠站;接下来有 si个正整数,表示所有停靠站的编号,从小到大排列。每两个数之间用一个空格隔开。输入保证所有的车次都满足要求。

输出格式:

输出文件为 level.out。

输出只有一行,包含一个正整数,即 n 个火车站最少划分的级别数。

输入输出样例

输入样例#1: 复制

9 2
4 1 3 5 6
3 3 5 6
输出样例#1: 复制

2
输入样例#2: 复制

9 3
4 1 3 5 6
3 3 5 6
3 1 5 9
输出样例#2: 复制

3

说明

对于 20%的数据,1 ≤ n, m ≤ 10;

对于 50%的数据,1 ≤ n, m ≤ 100;

对于 100%的数据,1 ≤ n, m ≤ 1000。

拓扑排序

没停靠的点一定比停靠点等级小

这两类点连边就行

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define inf 2147483647
const ll INF = 0x3f3f3f3f3f3f3f3fll;
#define ri register int
template <class T> inline T min(T a, T b, T c)
{
return min(min(a, b), c);
}
template <class T> inline T max(T a, T b, T c)
{
return max(max(a, b), c);
}
template <class T> inline T min(T a, T b, T c, T d)
{
return min(min(a, b), min(c, d));
}
template <class T> inline T max(T a, T b, T c, T d)
{
return max(max(a, b), max(c, d));
}
#define scanf1(x) scanf("%d", &x)
#define scanf2(x, y) scanf("%d%d", &x, &y)
#define scanf3(x, y, z) scanf("%d%d%d", &x, &y, &z)
#define scanf4(x, y, z, X) scanf("%d%d%d%d", &x, &y, &z, &X)
#define pi acos(-1)
#define me(x, y) memset(x, y, sizeof(x));
#define For(i, a, b) for (int i = a; i <= b; i++)
#define FFor(i, a, b) for (int i = a; i >= b; i--)
#define bug printf("***********\n");
#define mp make_pair
#define pb push_back
const int N = ;
const int M=;
// name*******************************
int n,m;
int vis[N];
int d[N][N];
int in[N];
struct edge
{
int to,next;
} e[M];
int Head[N];
int a[N];
int tot=;
queue<int>que;
int ans=;
// function******************************
void add(int u,int v)
{
e[++tot].to=v;
e[tot].next=Head[u];
Head[u]=tot;
}
int topo()
{
me(a,);
For(i,,n)
if(in[i]==)
que.push(i);
while(!que.empty())
{
int u=que.front();
que.pop();
for(int p=Head[u]; p; p=e[p].next)
{
int v=e[p].to;
in[v]--;
if(in[v]==)
{
a[v]=a[u]+;
que.push(v);
ans=max(a[v]+,ans);
}
}
}
return ans;
} //***************************************
int main()
{
// ios::sync_with_stdio(0);
// cin.tie(0);
// freopen("test.txt", "r", stdin);
// freopen("outout.txt","w",stdout);
cin>>n>>m;
while(m--)
{
me(a,);
me(vis,);
int t;
scanf("%d",&t);
For(i,,t)
{
scanf("%d",&a[i]);
vis[a[i]]=;
}
For(i,a[]+,a[t])
if(!vis[i])
For(j,,t)
if(!d[i][a[j]])
{
d[i][a[j]]=;
in[a[j]]++;
add(i,a[j]);
}
} cout<<topo(); return ;
}

P1983 车站分级的更多相关文章

  1. 洛谷P1983 车站分级

    P1983 车站分级 297通过 1.1K提交 题目提供者该用户不存在 标签图论贪心NOIp普及组2013 难度普及/提高- 提交该题 讨论 题解 记录 最新讨论 求帮忙指出问题! 我这么和(diao ...

  2. 洛谷P1983车站分级

    洛谷\(P1983\)车站分级(拓扑排序) 目录 题目描述 题目分析 思路分析 代码实现 题目描述 题目在洛谷\(P1983\)上 ​ 题目: 一条单向的铁路线上,依次有编号为 \(1, 2, -, ...

  3. 洛谷 P1983 车站分级

    题目链接 https://www.luogu.org/problemnew/show/P1983 题目描述 一条单向的铁路线上,依次有编号为 1,2,…,n的 n个火车站.每个火车站都有一个级别,最低 ...

  4. 洛谷P1983车站分级题解

    题目 这个题非常毒瘤,只要还是体现在其思维难度上,因为要停留的车站的等级一定要大于不停留的车站的等级,因此我们可以从不停留的车站向停留的车站进行连边,然后从入度为0的点即不停留的点全都入队,然后拓扑排 ...

  5. 【luogu P1983 车站分级】 题解

    题目链接:https://www.luogu.org/problemnew/show/P1983 符合了NOIP命题的特点,知识点不难,思维量是有的. step1:把题读进去,理解.得到 非停靠点的等 ...

  6. P1983 车站分级[拓扑]

    题目描述 一条单向的铁路线上,依次有编号为 1, 2, -, n1,2,-,n的 nn个火车站.每个火车站都有一个级别,最低为 11 级.现有若干趟车次在这条线路上行驶,每一趟都满足如下要求:如果这趟 ...

  7. 【洛谷P1983 车站分级】

    这题好像是个蓝题.(不过也确实差不多QwQ)用到了拓扑排序的知识 我们看这些这车站,沿途停过的车站一定比未停的车站的级别高 所以,未停靠的车站向已经停靠的车站连一条边,入度为0的车站级别就看做1 然后 ...

  8. P1983车站分级

    %%%rqy 传送 我们注意到题目中这段话: 既然大于等于x的站都要停,那么不停的站的级别是不是都小于x?(这里讨论在始发站和终点站以内的站(注意这里是个坑)) 我们可以找出每趟车没停的站,向所有停了 ...

  9. Luogu P1983 车站分级

    (一周没写过随笔了) 这道题有坑! 看到题目,发现这么明显(??)的要求顺序,还有什么想法,拓扑! 将每条路范围内等级大于等于它的点(不能重复(坑点1))和它连一条边,注意起点终点都要有(坑点2),然 ...

随机推荐

  1. win7游戏窗口设置

    在开始搜索框输入regedit打开注册表,定位到HKEY_LOCAL_MACHINE------SYSTEM------ControlSet001-------Control-------Graphi ...

  2. 设计模式(15)--Interpreter(解释器模式)--行为型

    作者QQ:1095737364    QQ群:123300273     欢迎加入! 1.模式定义: 解释器模式是类的行为模式.给定一个语言之后,解释器模式可以定义出其文法的一种表示,并同时提供一个解 ...

  3. js 四种调用模式和this的关系总结

    更新: 这篇又简单又明了啊喂 首先看这一篇, 很简单很清楚了,http://www.ruanyifeng.com/blog/2010/04/using_this_keyword_in_javascri ...

  4. 特来电CMDB应用实践

    配置管理数据库(Configuration Management Database,以下简称CMDB)是一个老生常谈的话题,不同的人有不同的见解,实际应用时,因为企业成熟度以及软硬件规模不同,别人的成 ...

  5. Android 外部启动activity,自定义action,action常量大全

    从任意app,启动另外一个app的activity: 1.   Intent i = new Intent();           ComponentName cn = new ComponentN ...

  6. Android--用JS去控制WebView显示的字体的大小

    <script type="text/javascript"> function changeFontSize(size) { var tfs = '120%'; va ...

  7. 【Redis】Redis学习(六) Redis 基本运维

    Redis的单机搭建,主从搭建,Sentinal搭建,以及Redis集群搭建的步骤参照前面的文章.现在来说一下Redis的基本运维,毕竟如果一切正常是最好的,但是当出现问题不能使用的时候,准确定位问题 ...

  8. [Android] 对自定义图片浏览器经常内存溢出的一些优化

    首先关于异步加载图片可以参见 夏安明 的博客:http://blog.csdn.net/xiaanming/article/details/9825113 这篇文章最近有了新的更改,大概看了一下,内容 ...

  9. MySQL主从复制——主库已有数据的解决方案

    在上篇文章中我们介绍了基于Docker的Mysql主从搭建,一主多从的搭建过程就是重复了一主一从的从库配置过程,需要注意的是,要保证主从库my.cnf中server-id的唯一性.搭建完成后,可以在主 ...

  10. Javascript执行流总结

    面对各种各样的JavaScript代码,我们有时候难免会犯错.可当自己仔细研究一下,哦原来是这么回事.有时候怎么会想为什么Javascript程序会是这样执行的呢?为什么没有得到自己预期的答案呢?自己 ...