题目描述

一条单向的铁路线上,依次有编号为 1, 2, …, n 的 n 个火车站。每个火车站都有一个级别,最低为 1 级。现有若干趟车次在这条线路上行驶,每一趟都满足如下要求:如果这趟车次停靠了火车站 x,则始发站、终点站之间所有级别大于等于火车站 x 的都必须停靠。(注意:起始站和终点站自然也算作事先已知需要停靠的站点)

例如,下表是 5 趟车次的运行情况。其中,前 4 趟车次均满足要求,而第 5 趟车次由于停靠了 3 号火车站(2 级)却未停靠途经的 6 号火车站(亦为 2 级)而不满足要求。

现有 m 趟车次的运行情况(全部满足要求),试推算这 n 个火车站至少分为几个不同的级别。

输入输出格式

输入格式:

输入文件为 level.in。

第一行包含 2 个正整数 n, m,用一个空格隔开。

第 i + 1 行(1 ≤ i ≤ m)中,首先是一个正整数 si(2 ≤ si ≤ n),表示第 i 趟车次有 si 个停靠站;接下来有 si个正整数,表示所有停靠站的编号,从小到大排列。每两个数之间用一个空格隔开。输入保证所有的车次都满足要求。

输出格式:

输出文件为 level.out。

输出只有一行,包含一个正整数,即 n 个火车站最少划分的级别数。

输入输出样例

输入样例#1: 复制

9 2
4 1 3 5 6
3 3 5 6
输出样例#1: 复制

2
输入样例#2: 复制

9 3
4 1 3 5 6
3 3 5 6
3 1 5 9
输出样例#2: 复制

3

说明

对于 20%的数据,1 ≤ n, m ≤ 10;

对于 50%的数据,1 ≤ n, m ≤ 100;

对于 100%的数据,1 ≤ n, m ≤ 1000。

拓扑排序

没停靠的点一定比停靠点等级小

这两类点连边就行

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define inf 2147483647
const ll INF = 0x3f3f3f3f3f3f3f3fll;
#define ri register int
template <class T> inline T min(T a, T b, T c)
{
return min(min(a, b), c);
}
template <class T> inline T max(T a, T b, T c)
{
return max(max(a, b), c);
}
template <class T> inline T min(T a, T b, T c, T d)
{
return min(min(a, b), min(c, d));
}
template <class T> inline T max(T a, T b, T c, T d)
{
return max(max(a, b), max(c, d));
}
#define scanf1(x) scanf("%d", &x)
#define scanf2(x, y) scanf("%d%d", &x, &y)
#define scanf3(x, y, z) scanf("%d%d%d", &x, &y, &z)
#define scanf4(x, y, z, X) scanf("%d%d%d%d", &x, &y, &z, &X)
#define pi acos(-1)
#define me(x, y) memset(x, y, sizeof(x));
#define For(i, a, b) for (int i = a; i <= b; i++)
#define FFor(i, a, b) for (int i = a; i >= b; i--)
#define bug printf("***********\n");
#define mp make_pair
#define pb push_back
const int N = ;
const int M=;
// name*******************************
int n,m;
int vis[N];
int d[N][N];
int in[N];
struct edge
{
int to,next;
} e[M];
int Head[N];
int a[N];
int tot=;
queue<int>que;
int ans=;
// function******************************
void add(int u,int v)
{
e[++tot].to=v;
e[tot].next=Head[u];
Head[u]=tot;
}
int topo()
{
me(a,);
For(i,,n)
if(in[i]==)
que.push(i);
while(!que.empty())
{
int u=que.front();
que.pop();
for(int p=Head[u]; p; p=e[p].next)
{
int v=e[p].to;
in[v]--;
if(in[v]==)
{
a[v]=a[u]+;
que.push(v);
ans=max(a[v]+,ans);
}
}
}
return ans;
} //***************************************
int main()
{
// ios::sync_with_stdio(0);
// cin.tie(0);
// freopen("test.txt", "r", stdin);
// freopen("outout.txt","w",stdout);
cin>>n>>m;
while(m--)
{
me(a,);
me(vis,);
int t;
scanf("%d",&t);
For(i,,t)
{
scanf("%d",&a[i]);
vis[a[i]]=;
}
For(i,a[]+,a[t])
if(!vis[i])
For(j,,t)
if(!d[i][a[j]])
{
d[i][a[j]]=;
in[a[j]]++;
add(i,a[j]);
}
} cout<<topo(); return ;
}

P1983 车站分级的更多相关文章

  1. 洛谷P1983 车站分级

    P1983 车站分级 297通过 1.1K提交 题目提供者该用户不存在 标签图论贪心NOIp普及组2013 难度普及/提高- 提交该题 讨论 题解 记录 最新讨论 求帮忙指出问题! 我这么和(diao ...

  2. 洛谷P1983车站分级

    洛谷\(P1983\)车站分级(拓扑排序) 目录 题目描述 题目分析 思路分析 代码实现 题目描述 题目在洛谷\(P1983\)上 ​ 题目: 一条单向的铁路线上,依次有编号为 \(1, 2, -, ...

  3. 洛谷 P1983 车站分级

    题目链接 https://www.luogu.org/problemnew/show/P1983 题目描述 一条单向的铁路线上,依次有编号为 1,2,…,n的 n个火车站.每个火车站都有一个级别,最低 ...

  4. 洛谷P1983车站分级题解

    题目 这个题非常毒瘤,只要还是体现在其思维难度上,因为要停留的车站的等级一定要大于不停留的车站的等级,因此我们可以从不停留的车站向停留的车站进行连边,然后从入度为0的点即不停留的点全都入队,然后拓扑排 ...

  5. 【luogu P1983 车站分级】 题解

    题目链接:https://www.luogu.org/problemnew/show/P1983 符合了NOIP命题的特点,知识点不难,思维量是有的. step1:把题读进去,理解.得到 非停靠点的等 ...

  6. P1983 车站分级[拓扑]

    题目描述 一条单向的铁路线上,依次有编号为 1, 2, -, n1,2,-,n的 nn个火车站.每个火车站都有一个级别,最低为 11 级.现有若干趟车次在这条线路上行驶,每一趟都满足如下要求:如果这趟 ...

  7. 【洛谷P1983 车站分级】

    这题好像是个蓝题.(不过也确实差不多QwQ)用到了拓扑排序的知识 我们看这些这车站,沿途停过的车站一定比未停的车站的级别高 所以,未停靠的车站向已经停靠的车站连一条边,入度为0的车站级别就看做1 然后 ...

  8. P1983车站分级

    %%%rqy 传送 我们注意到题目中这段话: 既然大于等于x的站都要停,那么不停的站的级别是不是都小于x?(这里讨论在始发站和终点站以内的站(注意这里是个坑)) 我们可以找出每趟车没停的站,向所有停了 ...

  9. Luogu P1983 车站分级

    (一周没写过随笔了) 这道题有坑! 看到题目,发现这么明显(??)的要求顺序,还有什么想法,拓扑! 将每条路范围内等级大于等于它的点(不能重复(坑点1))和它连一条边,注意起点终点都要有(坑点2),然 ...

随机推荐

  1. php根据命令行参数生成配置文件

    像npm, composer等工具,在开始使用的使用,都需要初始化项目,生成一个项目的配置文件.这种功能的原理是怎么实现的呢? 比如: D:\>npm init --yes Wrote to D ...

  2. 绘图:Matplotlib

    用于绘制一些数据图,同学推荐的,挺好用.非常好的官网文档:http://matplotlib.org/contents.html 0. 安装 可以直接pip install,还有一些依赖就按照提示来吧 ...

  3. switch的用法

    switch case 语句有如下规则: switch 语句中的变量类型可以是: byte.short.int 或者 char.从 Java SE 7 开始,switch 支持字符串 String 类 ...

  4. Linux打包、压缩与解压详解

    介绍:在Windows下最常见的压缩文件就只有两种,另一个是.rar,它有.gz..tar.gz.tgz.bz2..Z..tar等众多的压缩文件名,本文就来对这些常见的压缩文件进行总结,在具体总结各类 ...

  5. 实现卡片效果【DIV+CSS3】

    一.文字卡片效果 <html> <head> meta<charset="utf-8"> <title>文字卡片效果</tit ...

  6. FineReport新增多项目甘特图示例及操作

    1.描述 我们在做报表的时候,往往想体现其中随着时间的变化而产生的项目进度的变化和其他相关的系统进展,每当这种时候甘特图便是其中的不二之选.FineReport新增的多项目甘特图可以说是满足了大多数的 ...

  7. 大数据【三】YARN集群部署

    一 概述 YARN是一个资源管理.任务调度的框架,采用master/slave架构,主要包含三大模块:ResourceManager(RM).NodeManager(NM).ApplicationMa ...

  8. 常用内置方法之:__str__,__repr__

    class Test(object): def __init__(self): pass def __str__(self): return "test" test = Test( ...

  9. 在Windows上安装Gradle

    1.开发环境 (1)Java:JDK8(必须是JDK或JRE7以上,使用java -version查看当前电脑java版本) (2)操作系统:Windows 7 2.安装步骤 (1)下载最新的Grad ...

  10. android:screenOrientation属性

    今天工作中发现一个activity的android:screenOrientation属性设置为behind,平时经常看到的是landscape.portrait,一时没有反应过来,故查了一下andr ...