1.使用sklearn库和matplotlib.pyplot库

import sklearn
import matplotlib.pyplot as plt

2.准备绘图函数的传入参数1.预测的概率值数组2.预测的labels值数组

for i in range(len(y_labeles)):
a = np.argmax(y_labeles[i])
y_pred.append(y_conv.eval(feed_dict={x: np.reshape(mnist.test.images[i], [1, 784]), keep_prob: 0.5}, session=sess)[0][a])
y_labeles_d1.append(correct_prediction.eval(feed_dict={x: np.reshape(mnist.test.images[i], [1, 784]), y_: np.reshape(y_labeles[i], [1, 10]), keep_prob: 0.5}, session=sess))

3.调用sklearn.metrics.roc_curve();

fpr, tpr, thresholds = sklearn.metrics.roc_curve(y_labeles_d1, y_pred)

plt.plot(fpr, tpr, 'b')#生成ROC曲线
plt.legend(loc='lower right')
plt.plot([0, 1], [0, 1], 'r--')
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.ylabel('TP')
plt.xlabel('FP')
plt.show()

4.例子

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import numpy as np
import sklearn
import matplotlib.pyplot as plt mnist = input_data.read_data_sets('data/', one_hot=True) def weight_variable(shape, name):
initial = tf.truncated_normal(shape, stddev=0.1, name=name)
return tf.Variable(initial) def bias_variable(shape, name):
initial = tf.constant(0.1, shape=shape, name=name)
return tf.Variable(initial) def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') x = tf.placeholder(tf.float32, [None, 784])
y_ = tf.placeholder(tf.float32, [None, 10])
x_image = tf.reshape(x, [-1, 28, 28, 1]) W_conv1 = weight_variable([5, 5, 1, 32], name='W_conv1')
b_conv1 = bias_variable([32], name='b_conv1')
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1) W_conv2 = weight_variable([5, 5, 32, 64], name='W_conv2')
b_conv2 = bias_variable([64], name='b_conv2')
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2) W_fc1 = weight_variable([7*7*64, 1024], name='W_fc1')
b_fc1 = bias_variable([1024], name='b_fc1')
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) W_fc2 = weight_variable([1024, 10], name='W_fc2')
b_fc2 = bias_variable([10], name='b_fc2')
y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) cross_entropy = tf.reduce_sum(tf.nn.softmax_cross_entropy_with_logits(logits=y_conv, labels=y_)) # cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_conv), reduction_indices=[1]))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) sess = tf.Session()
sess.run(tf.global_variables_initializer()) for i in range(500): batch = mnist.train.next_batch(100) train_step.run(session=sess, feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
if i % 500 == 0 and i != 0:
train_accuracy = accuracy.eval(session=sess, feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0})
print('step %d, training accuracy %g' % (i, train_accuracy)) print("!!!!!")
print('test accuracy %g' % accuracy.eval(session=sess, feed_dict={
x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0
})) saver = tf.train.Saver()
saver.save(sess, './trained_variables.ckpt', global_step=1000) y_labeles = mnist.test.labels
y_pred = []
y_labeles_d1 = [] for i in range(len(y_labeles)):
a = np.argmax(y_labeles[i])
y_pred.append(y_conv.eval(feed_dict={x: np.reshape(mnist.test.images[i], [1, 784]), keep_prob: 0.5}, session=sess)[0][a])
y_labeles_d1.append(correct_prediction.eval(feed_dict={x: np.reshape(mnist.test.images[i], [1, 784]), y_: np.reshape(y_labeles[i], [1, 10]), keep_prob: 0.5}, session=sess)) fpr, tpr, thresholds = sklearn.metrics.roc_curve(y_labeles_d1, y_pred) plt.plot(fpr, tpr, 'b')#生成ROC曲线
plt.legend(loc='lower right')
plt.plot([0, 1], [0, 1], 'r--')
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.ylabel('TP')
plt.xlabel('FP')
plt.show() # with tf.Session() as sess:
# new_saver = tf.train.import_meta_graph('my_test_model-1000.meta')
# new_saver.restore(sess, tf.train.latest_checkpoint('./')) # print(sess.run(W_conv1))

5.效果:

scikit-learn画ROC图的更多相关文章

  1. (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探

    一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...

  2. MATLAB画ROC曲线,及计算AUC值

    根据决策值和真实标签画ROC曲线,同时计算AUC的值 步骤: 根据决策值和真实标签画ROC曲线,同时计算AUC的值: 计算算法的决策函数值deci 根据决策函数值deci对真实标签y进行降序排序,得到 ...

  3. 使用Mysql Workbench 画E-R图

    MySQL Workbench 是一款专为MySQL设计的ER/数据库建模工具.你可以用MySQL Workbench设计和创建新的数据库图示,建立数据库文档,以及进行复杂的MySQL 迁移.这里介绍 ...

  4. 用rose画UML图(用例图,活动图)

    用rose画UML图(用例图,活动图) 首先,安装rose2003,电脑从win8升到win10以后,发现win10并不支持rose2003的安装,换了rose2007以后,发现也不可以. 解决途径: ...

  5. python中matplotlib画折线图实例(坐标轴数字、字符串混搭及标题中文显示)

    最近在用python中的matplotlib画折线图,遇到了坐标轴 "数字+刻度" 混合显示.标题中文显示.批量处理等诸多问题.通过学习解决了,来记录下.如有错误或不足之处,望请指 ...

  6. 相机拍的图,电脑上画的图,word里的文字,电脑屏幕,手机屏幕,相机屏幕显示大小一切的一切都搞明白了!

    相机拍的图,电脑上画的图,word里的文字,电脑屏幕,手机屏幕,相机屏幕显示大小一切的一切都搞明白了! 先说图片X×dpi=点数dotX是图片实际尺寸,简单点,我们只算图片的高吧,比如说拍了张图片14 ...

  7. SAS 画折线图PROC GPLOT

    虽然最后做成PPT里的图表会被要求用EXCEL画,但当我们只是在分析的过程中,想看看数据的走势,直接在SAS里画会比EXCEL画便捷的多. 修改起来也会更加的简单,,不用不断的修改程序然后刷新EXCE ...

  8. Windows8.1画热度图 - 坑

    想要的效果 如上是silverlight版本.原理是设定一个调色板,为256的渐变色(存在一个png文件中,宽度为256,高度为1),然后针对要处理的距离矩阵图形,取图片中每个像素的Alpha值作为索 ...

  9. 使用网站websequencediagrams在线画时序图

    在线画时序图的网站:https://www.websequencediagrams.com/ 该网站提供拖拉图形和编写脚本代码2个方式来制作时序图,同时提供多种显示风格. 实例: 1.脚本代码: ti ...

随机推荐

  1. iOS数据持久化--数据库

    一.简介 1.iOS常用的5中存储方式 (1)plist (2)preference(用户属性) (3)归档 (4)数据库 (5)core data 其中(1)(2) (3) 都只能存储小型的数据,因 ...

  2. VirtualBox下Ubuntu虚拟机共享文件夹、自动挂载相关配置

    VirtualBox Ubuntu 共享文件夹的自动挂载: 一些基本的操作步骤: 首先,我们想要实现VirtualBox虚拟机与windows系统之间的通信,我们必须也应该正确的安装虚拟机系统. 其次 ...

  3. MVC3学习:将excel文件导入到sql server数据库

    思路: 1.将excel文件导入到服务器中. 2.读取excel文件,转换成dataset. 3.循环将dataset数据插入到数据库中. 本例子使用的表格为一个友情链接表F_Link(LinkId, ...

  4. flex布局下, 内容改变 不重新渲染问题

    当使用flex布局时,flex内元素包含的内容改变时,浏览器不会进行重新渲染, 答案引用 http://stackoverflow.com/questions/23474191/flexbox-hei ...

  5. 【奔走相告】- Github送福利:用户可免费创建私有代码库啦

    最新消息 PingWest品玩1月8日讯,据TheNextWeb消息,据美国科技媒体The Next Web报道,被微软收购的代码平台GitHub最近调整政策,用户免费创建无限空间私有代码库(priv ...

  6. jmeter接口自动化部署jenkins教程

    首先,保证本地安装并部署了jenkins,jmeter,xslproc 我搭建的自动化测试框架是jmeter+jenkins+xslproc ---注意:原理是,jmeter自生成的报告jtl文件,通 ...

  7. tensorflow 优化图

    当我们把训练好的tensorflow训练图拿来进行预测时,会有多个训练时生成的节点,这些节点是不必要的,我们需要在预测的时候进行删除. 下面以bert的图为例,进行优化 def optimize_gr ...

  8. solr(二) : 整合ik-analyzer

    一. 问题: 在使用solr时, 分词器解析中文的时候, 是一个一个字解析的. 这并不是我们想要的结果. 而在lucene中, 使用的中文分词器是 IKAnalyzer. 那么在solr里面, 是不是 ...

  9. NIO的Buffer&Channel&Selector

    java的NIO和AIO Buffer position.limit.capacity 初始化 Buffer 填充 Buffer 提取 Buffer 中的值 mark() & reset() ...

  10. Application Metrics With Spring Boot Actuator

    转自:https://bartcode.co.uk/2015/01/application-metrics-with-spring-boot-actuator Update 12/2017: It w ...