import numpy as np
import operator as op from math import log def createDataSet():
dataSet = [[1, 1, 'yes'],
[1, 1, 'yes'],
[1, 0, 'no'],
[0, 1, 'no'],
[0, 1, 'no']]
labels = ['no surfacing','flippers']
return dataSet, labels dataSet,labels = createDataSet()
print(dataSet)
print(labels) def calcShannonEnt(dataSet):
labelCounts = {}
for featVec in dataSet:
currentLabel = featVec[-1]
if(currentLabel not in labelCounts.keys()):
labelCounts[currentLabel] = 0
labelCounts[currentLabel] += 1
shannonEnt = 0.0
rowNum = len(dataSet)
for key in labelCounts:
prob = float(labelCounts[key])/rowNum
shannonEnt -= prob * log(prob,2)
return shannonEnt shannonEnt = calcShannonEnt(dataSet)
print(shannonEnt) def splitDataSet(dataSet, axis, value):
retDataSet = []
for featVec in dataSet:
if(featVec[axis] == value):
reducedFeatVec = featVec[:axis]
reducedFeatVec.extend(featVec[axis+1:])
retDataSet.append(reducedFeatVec)
return retDataSet retDataSet = splitDataSet(dataSet,1,1)
print(np.array(retDataSet))
retDataSet = splitDataSet(dataSet,1,0)
print(retDataSet) def chooseBestFeatureToSplit(dataSet):
numFeatures = np.shape(dataSet)[1]-1
baseEntropy = calcShannonEnt(dataSet)
bestInfoGain = 0.0
bestFeature = -1
for i in range(numFeatures):
featList = [example[i] for example in dataSet]
uniqueVals = set(featList)
newEntropy = 0.0
for value in uniqueVals:
subDataSet = splitDataSet(dataSet, i, value)
prob = len(subDataSet)/float(len(dataSet))
newEntropy += prob * calcShannonEnt(subDataSet)
infoGain = baseEntropy - newEntropy
if (infoGain > bestInfoGain):
bestInfoGain = infoGain
bestFeature = i
return bestFeature bestFeature = chooseBestFeatureToSplit(dataSet)
print(bestFeature) def majorityCnt(classList):
classCount={}
for vote in classList:
if(vote not in classCount.keys()):
classCount[vote] = 0
classCount[vote] += 1
sortedClassCount = sorted(classCount.items(), key=op.itemgetter(1), reverse=True)
return sortedClassCount[0][0] def createTree(dataSet,labels):
classList = [example[-1] for example in dataSet]
if(classList.count(classList[0]) == len(classList)):
return classList[0]
if len(dataSet[0]) == 1:
return majorityCnt(classList)
bestFeat = chooseBestFeatureToSplit(dataSet)
bestFeatLabel = labels[bestFeat]
myTree = {bestFeatLabel:{}}
del(labels[bestFeat])
featValues = [example[bestFeat] for example in dataSet]
uniqueVals = set(featValues)
for value in uniqueVals:
subLabels = labels[:]
myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value),subLabels)
return myTree myTree = createTree(dataSet,labels)
print(myTree) def classify(inputTree,featLabels,testVec):
for i in inputTree.keys():
firstStr = i
break
secondDict = inputTree[firstStr]
featIndex = featLabels.index(firstStr)
key = testVec[featIndex]
valueOfFeat = secondDict[key]
if isinstance(valueOfFeat, dict):
classLabel = classify(valueOfFeat, featLabels, testVec)
else:
classLabel = valueOfFeat
return classLabel featLabels = ['no surfacing', 'flippers']
classLabel = classify(myTree,featLabels,[1,1])
print(classLabel) import pickle def storeTree(inputTree,filename):
fw = open(filename,'wb')
pickle.dump(inputTree,fw)
fw.close() def grabTree(filename):
fr = open(filename,'rb')
return pickle.load(fr) filename = "D:\\mytree.txt"
storeTree(myTree,filename)
mySecTree = grabTree(filename)
print(mySecTree) featLabels = ['no surfacing', 'flippers']
classLabel = classify(mySecTree,featLabels,[0,0])
print(classLabel)

吴裕雄 python 机器学习-DMT(1)的更多相关文章

  1. 吴裕雄 python 机器学习-DMT(2)

    import matplotlib.pyplot as plt decisionNode = dict(boxstyle="sawtooth", fc="0.8" ...

  2. 吴裕雄 python 机器学习——分类决策树模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_s ...

  3. 吴裕雄 python 机器学习——回归决策树模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_s ...

  4. 吴裕雄 python 机器学习——线性判断分析LinearDiscriminantAnalysis

    import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot ...

  5. 吴裕雄 python 机器学习——逻辑回归

    import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot ...

  6. 吴裕雄 python 机器学习——ElasticNet回归

    import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot ...

  7. 吴裕雄 python 机器学习——Lasso回归

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model from s ...

  8. 吴裕雄 python 机器学习——岭回归

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model from s ...

  9. 吴裕雄 python 机器学习——线性回归模型

    import numpy as np from sklearn import datasets,linear_model from sklearn.model_selection import tra ...

随机推荐

  1. Hive与HBase集成进行数据分析

    我们把hive的安装包上传的节点3来 解压 现在我们还是老规矩通过notopad++来连接我们的虚拟机来配置文件,把下面这两个文件重命名一下 修改这个文件 对hive-env.sh我们修改这里 下面我 ...

  2. 用ng-style修改元素的color, size等

    1) 在Controller中定义变量myStyle var myStyle={'background-color':'blue'} $scope.myStyle = myStyle; 2) 在HTM ...

  3. 一篇文章,教你学会Git

    在日常工作中,经常会用到Git操作.但是对于新人来讲,刚上来对Git很陌生,操作起来也很懵逼.本篇文章主要针对刚开始接触Git的新人,理解Git的基本原理,掌握常用的一些命令. 一.Git工作流程 以 ...

  4. flask-日料网站搭建-后台登录

    引言:想使用python的flask框架搭建一个日料网站,主要包含web架构,静态页面,后台系统,交互,今天教大家实现后台登录功能,比较简单. 本节知识:表单标签,表单验证,数据查询,模板 pytho ...

  5. Django中的ORM相关操作:F查询,Q查询,事物,ORM执行原生SQL

    一    F查询与Q查询: 1 . F查询: 在上面所有的例子中,我们构造的过滤器都只是将字段值与某个常量做比较.如果我们要对两个字段的值做比较,那该怎么做呢? Django 提供 F() 来做这样的 ...

  6. 十二省NOI“省选”联考模测(第二场)A抽卡大赛

    /* dp维护整体的概率, 每次相当于回退一格然后重新dp一格 */ #include<cstdio> #include<algorithm> #include<iost ...

  7. SVN上拖下来的项目,缺少build path怎么办?

    在eclipse里用subeclipe从svn上拖下来的项目,看不见java build path怎么办? 原因那是因为你的两个配置文件:.project .classpath没有内容或者缺失. 重新 ...

  8. ActiveMQ核心技术

                                        消息中间件技术 一.ActiveMQ 1>生产消息,消费消息流程图

  9. python-运算符重载

    1. __item__ class X: def __init__(self, data=None): self.data = data or [] # 同样可用于 dict def __setite ...

  10. 应用PLSQL Developer(技巧)

    以下是一些 PLSQL Developer的使用技巧. 转自:PLSQL developer常用技巧,作者:逍遥游xj