[atAGC046F]Forbidden Tournament
称满足第1个条件的图为竞赛图,先来分析竞赛图
结论1:竞赛图点集上的导出子图也为竞赛图(证明略)
结论2:对于一张竞赛图,若不含有3元环,则该图为DAG
证明:反证法,若其不为DAG,设最小的简单环为$c_{1},c_{2},...,c_{k}$,必然有$k\ge 4$
根据第1个条件,考虑$c_{1}$和$c_{3}$之间边的方向,不论怎样都会有更小的简单环,与假设矛盾,因此不存在简单环
利用这个结论,来对$G$分类讨论:
1.若存在$d$使得$d$入度为0,那么$d$出度必然为$n-1$,即考虑将$d$删除并令$n$和$k$减小1的子问题(由于$a,b,c,d$四个点的入度都不为0,不影响第3个条件)
2.若所有点入度都不为0,任选一点$d$,令$V'=\{x|(x,d)\in E\}$,$V'$的导出子图不能含有3元环(否则三元环+$d$即不合法),则其为DAG
令$V_{补}={x|(d,x)\in E}$(注意$d\notin V_{补}\cup V'$),以下来证明$V_{补}$的导出子图也是一张DAG
考虑$x,y\in V_{补}$,不妨设边的方向为$(x,y)$,那么若存在$(x,z),(z,y)\in E$,则$(x,z,d,y)$不合法,换一种方式来描述这个条件:设$S_{x}=\{z|z\in V',(x,z)\in E\}$,则$S_{x}\subseteq S_{y}$
如果存在$x_{1},x_{2},x_{3}\in V_{补}$构成了三元环,则$S_{x_{1}}=S_{x_{2}}=S_{x_{3}}=\emptyset$(否则$(x_{1},x_{2},x_{3},z\in S_{x_{1}})$不合法)
再考虑一个点$x_{4}\in V_{补}$,若不存在$(x_{4},x_{i})\in E$(其中$i=1,2,3$),则$(x_{1},x_{2},x_{3},x_{4})$不合法,否则假设其所连的点为$x$,则$S_{x_{4}}\subseteq S_{x}=\emptyset$
对于$V'$的导出子图中度为0的点$z$(由于是DAG,必然存在),$\forall x\in V_{补},(x,z)\notin E$,因此$z$的入度为0,与‘所有点入度都不为0’矛盾,因此$V_{补}$中无三元环,即为DAG
考虑$(x_{1},x_{2},y_{1},y_{2})$这种形式所构成的不合法(其中$x_{1},x_{2}\in V'$且$(x_{1},x_{2})\in E$,$y_{1},y_{2}$类似),利用上面$S_{x}$的条件,有$S_{y_{1}}\subseteq S_{y_{2}}$
对于$d=x_{2}$和$d=y_{2}$(这里的$d$指四元组中的$d$,下同)分类讨论,由于$x_{2}\in S_{y_{1}}$且$\notin S_{y_{2}}$,后者是不合法的,因此考虑前者
取$x_{2}\in S_{y_{1}}$且$x_{1}\in C_{(S_{y_{2}})}S_{y_{1}}$,若$(x_{1},x_{2})\in E$一定不合法,因此$S_{y_{1}}$一定是$S_{y_{2}}$的一个‘前缀’(指在$V'$的拓扑序上)或$S_{y_{1}}$为空
另外由于每一个点入度都不为0,令$x$为$V'$中拓扑序最小的,$y$为$V_{补}$中拓扑序最大的,必然有$x\in S_{y}$,再结合上面的这个结论,有若$S_{y}\neq \emptyset$,则$x\in S_{y}$
再考虑$(x_{1},x_{2},x_{3},y)$这种形式的不合法($x_{i}\in V'$且$(x_{1},x_{2}),(x_{2},x_{3})\in E$,$y\in V_{补}$),同样对$d=x_{3}$和$d=y$分类讨论,后者显然无法使$(x_{1},x_{2},x_{3})$构成三元环,因此考虑前者
取$x_{1}$为字典序最小的位置,若$S_{y}\neq \empty$,则$x_{1}\in S_{y}$,那么接下来不能存在$x_{2}\notin S_{y}$且$x_{3}\in S_{y}$,换言之,$S_{y}$必须是$V'$的拓扑序上一个前缀(可以为空)
由于一个前缀仅通过长度确定,即令$a_{i}=|S_{y}|$(其中$y$为$V_{补}$中拓扑序为$i$的点),合法必要条件为:
1.$\forall 1\le i<|V_{补}|,a_{i}\le a_{i+1}$,$a_{|V_{补}|}>0$
2.$\forall 1\le i\le |V_{补}|,|V'|-a_{i}+i\le k$
3.$\forall 1\le i\le |V'|,(i-1+\sum [i\le a_{j}])\le k$
同时,上述分析已经考虑了所有情况,即这些条件也是充分条件
首先,每一个点都是相同的,先通过$n-1\choose |V'|$、$|V'|!$和$|V_{补}|!$来确定两边的点以及拓扑序(都是DAG),之后即统计合法的$a_{i}$方案数
对于第3个条件,仅取$i=a_{j}$判定即可,因此等价于$\forall 1\le i\le |V_{补}|,V_{补}-i+a_{i}\le k$,即每一个$a_{i}$有一个范围,使其不降的方案数,简单dp再用前缀和维护即可,总复杂度为$o(n^{4})$


1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 205
4 int n,k,mod,ans,fac[N],inv[N],l[N],r[N],f[N][N];
5 int c(int n,int m){
6 return 1LL*fac[n]*inv[m]%mod*inv[n-m]%mod;
7 }
8 int sum(int k,int l,int r){
9 if (l>r)return 0;
10 if (!l)return f[k][r];
11 return (f[k][r]+mod-f[k][l-1])%mod;
12 }
13 int calc(int n){
14 memset(f,0,sizeof(f));
15 for(int i=l[1];i<=r[1];i++)f[1][i]=i-l[1]+1;
16 for(int i=2;i<=n;i++)
17 for(int j=l[i];j<=r[i];j++){
18 f[i][j]=sum(i-1,l[i-1],min(j,r[i-1]));
19 if (j>l[i])f[i][j]=(f[i][j]+f[i][j-1])%mod;
20 }
21 return sum(n,l[n],r[n]);
22 }
23 int main(){
24 scanf("%d%d%d",&n,&k,&mod);
25 fac[0]=inv[0]=inv[1]=1;
26 for(int i=1;i<N-4;i++)fac[i]=1LL*fac[i-1]*i%mod;
27 for(int i=2;i<N-4;i++)inv[i]=1LL*(mod-mod/i)*inv[mod%i]%mod;
28 for(int i=2;i<N-4;i++)inv[i]=1LL*inv[i-1]*inv[i]%mod;
29 for(int i=0;i<=k;i++){
30 int nn=n-i,kk=k-i;
31 if (nn==1){
32 ans=(ans+fac[n])%mod;
33 continue;
34 }
35 for(int j=1;j<=kk;j++){
36 int jj=nn-1-j;
37 for(int t=1;t<=jj;t++){
38 l[t]=max(j+t-kk,0);
39 r[t]=min(kk+t-jj,j);
40 }
41 l[jj]=max(l[jj],1);
42 int s=1LL*c(n,i)*fac[i]%mod*fac[nn-1]%mod;
43 ans=(ans+1LL*s*calc(jj))%mod;
44 }
45 }
46 printf("%d",ans);
47 }
[atAGC046F]Forbidden Tournament的更多相关文章
- Codeforces CF#628 Education 8 A. Tennis Tournament
A. Tennis Tournament time limit per test 1 second memory limit per test 256 megabytes input standard ...
- 遇到 HTTP 错误 403.14 - Forbidden?
打开 http://localhost:1609 报错: HTTP 错误 403.14 - Forbidden Web 服务器被配置为不列出此目录的内容 解决方案一:设置默认首页 在 Web.conf ...
- Forbidden You don't have permission to access / on this server PHP
在新安装的谷歌游览器里,打不了PHP网站了,错误显示: Forbidden You don't have permission to access / on this server. 原因还是配置权限 ...
- Apache2.4部署django出现403 Forbidden错误解决办法
前言:Apache2.4部署django出现403 Forbidden错误最好要结合apache中的错误日志来观察出现何种错误导致出现403错误 下午百度了一下午没找到解决办法,试了n种方法,简直坑爹 ...
- vs2015启动网站调试提示 HTTP 错误 403.14 - Forbidden Web 服务器被配置为不列出此目录的内容。 解决方法
今天安装了vs2015 下载一个项目进行试用,启动调试的时候提示 HTTP 错误 403.14 - Forbidden Web 服务器被配置为不列出此目录的内容. 最可能的原因: 没有为请求的 URL ...
- [Linux] Nginx networking 403 Forbidden 静态文件不允许查看
nginx 的 403 Forbidden errors 表示你在请求一个资源文件但是nginx不允许你查看. 403 Forbidden 只是一个HTTP状态码,像404,200一样不是技术上的错误 ...
- [转]权限问题导致Nginx 403 Forbidden错误的解决方法
权限问题导致Nginx 403 Forbidden错误的解决方法 投稿:junjie 字体:[增加 减小] 类型:转载 时间:2014-08-22 这篇文章主要介绍了权限问题导致Nginx 403 F ...
- xampp出现 Access forbidden! 问题解决
解决 XAMPP 出现 A今天安装了XAMPP 试了下,增加虚拟主机时出现没权限,apache配置文件httpd.conf的allow属性,把下图中的文字注释掉: 然后公开于外网出现以下错误,也很容易 ...
- Wampserver2.5配置虚拟主机出现403 Forbidden的处理方案
WampServer是一款由法国人开发的Apache Web服务器.PHP解释器以 及MySQL数据库的整合软件包.免去了开发人员将时间花费在繁琐的配置环境过程,从而腾出更多精力去做开发.在windo ...
随机推荐
- oracle数据导入"HIST_GRAM_LIST_ITEM"问题处理
1.问题显示 处理对象类型 SCHEMA_EXPORT/TABLE/CONSTRAINT/REF_CONSTRAINT ORA-39083: 对象类型 REF_CONSTRAINT 创建失败, 出现错 ...
- 洛谷3769[CH弱省胡策R2]TATT (KDTree)(四维LIS)
真是一个自闭的题目(调了一个上午+大半个下午) 从\(WA\)到\(WA+TLE\)到\(TLE\)到\(AC\) 真的艰辛. 首先,这个题,我们可以考虑直接上四维KDTree来解决. 对于kdtre ...
- Eureka使用总结
关于Eureka: 提供基于 REST的服务,在集群中主要用于服务管理.使用该框架,可以将业务组件注册到Eureka容器中,这些组件可进行集群部署,Eureka主要维护这些服务的列表并自动检查他们的状 ...
- 【Python】 第三周:基本数据类型
整数 python整数无限制 二进制:以0b或者0B开头,例如: 0b010,-0B101 八进制:以0o或者0O开头,例如:0o123,-0O456 浮点数 浮点数间运算存在不确定尾数,不是bug ...
- JVM:参数调优
JVM:参数调优 本笔记是根据bilibili上 尚硅谷 的课程 Java大厂面试题第二季 而做的笔记 前言 查看 JVM 系统默认值:使用 jps 和 jinfo 进行查看 -Xms:初始堆空间 - ...
- Scrum Meeting 0522
零.说明 日期:2021-5-22 任务:简要汇报两日内已完成任务,计划后两日完成任务 备注:由于在Beta冲刺阶段的最后一周中团队成员需要准备必修课程计算机网络的相关考试,所以为了保证Beta功能的 ...
- Beta阶段第七次会议
Beta阶段第七次会议 时间:2020.5.23 完成工作 姓名 工作 难度 完成度 ltx 1.修改小程序页面无法加载bug2.修改条件语句,使得页面能够正常显示 中 90% xyq 1.根据api ...
- 并发编程从零开始(八)-ConcurrentHashMap
并发编程从零开始(八)-ConcurrentHashMap 5.5 ConcurrentHashMap HashMap通常的实现方式是"数组+链表",这种方式被称为"拉链 ...
- filebeat收集日志到elsticsearch中并使用ingest node的pipeline处理
filebeat收集日志到elsticsearch中 一.需求 二.实现 1.filebeat.yml 配置文件的编写 2.创建自定义的索引模板 3.加密连接到es用户的密码 1.创建keystore ...
- 微信小程序的实现原理
一.背景 网页开发,渲染线程和脚本是互斥的,这也是为什么长时间的脚本运行可能会导致页面失去响应的原因,本质就是我们常说的 JS 是单线程的 而在小程序中,选择了 Hybrid 的渲染方式,将视图层和逻 ...